Publications by authors named "Leilei Su"

In this study, we revisit named entity recognition (NER) in the biomedical domain from a multimodal perspective, with a particular focus on applications in low-resource languages. Existing research primarily relies on unimodal methods for NER, which limits the potential for capturing diverse information. To address this limitation, we propose a novel method that integrates a cross-modal generation module to transform unimodal data into multimodal data, thereby enabling the use of enriched multimodal information for NER.

View Article and Find Full Text PDF

Objective: Although deep learning techniques have shown significant achievements, they frequently depend on extensive amounts of hand-labeled data and tend to perform inadequately in few-shot scenarios. The objective of this study is to devise a strategy that can improve the model's capability to recognize biomedical entities in scenarios of few-shot learning.

Methods: By redefining biomedical named entity recognition (BioNER) as a machine reading comprehension (MRC) problem, we propose a demonstration-based learning method to address few-shot BioNER, which involves constructing appropriate task demonstrations.

View Article and Find Full Text PDF

Background: The global COVID-19 pandemic has resulted in over seven million deaths, and IFI can further complicate the clinical course of COVID-19. Coinfection of COVID-19 and IFI (secondary IFI) pose significant threats not only to healthcare systems but also to patient lives. After the control measures for COVID-19 were lifted in China, we observed a substantial number of ICU patients developing COVID-19-associated IFI.

View Article and Find Full Text PDF

Motivation: The biomedical literature contains a wealth of chemical-protein interactions (CPIs). Automatically extracting CPIs described in biomedical literature is essential for drug discovery, precision medicine, as well as basic biomedical research. Most existing methods focus only on the sentence sequence to identify these CPIs.

View Article and Find Full Text PDF