A new synthetisis method of Cu-doped ZnO nanoparticles is presented in this work, this novel approach allow one to produce Zinc oxide nanocristal owing to a modified Polyol process that makes use of triethyleneglycol (TREG) as a solvent. The structure and morphology of the nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N adsorption study, UV-Vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy. The lightly doped ZnCuO photocatalysts consisted in a novel nanorods structure of ZnCuO nanoparticles.
View Article and Find Full Text PDFThe increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_ and Au_) in 1.
View Article and Find Full Text PDFWe report on the facile and low-temperature one-pot chemical synthesis of lightly doped Zn Cu O and hybrid Au-Zn Cu O photocatalysts with low Cu molar content (0 < x < 0.7%) using 1,3-propanediol polyol simultaneously as solvent, reducing and a stabilizing agent, without any final thermal treatment. The photocatalysts have been characterized by X-ray diffraction, N adsorption study, UV-vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy, and transmission electron microscopy.
View Article and Find Full Text PDFToxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated in Lemna gibba plants exposed for 7 days to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.
View Article and Find Full Text PDF