Publications by authors named "Leila Negahdar"

Metal-Organic Framework (MOF)-derived TiO, synthesised through the calcination of MIL-125-NH, is investigated for its potential as a CO photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH.

View Article and Find Full Text PDF

TiO2-x/W18O49 with core-shell or double-shelled hollow microspheres were synthesized through a facile multi-step solvothermal method. The formation of the hollow microspheres with a double-shell was a result of the Kirkendall effect during the solvothermal treatment with concentrated NaOH. The advanced architecture significantly enhanced the electronic properties of TiO2-x/W18O49, improving by more than 30 times the CO2 photoreduction efficiency compared to the pristine W18O49.

View Article and Find Full Text PDF

Anodized aluminum oxides (AAOs) are synthesized and used as catalyst support in combination with Ru as metal in hydrogenation catalysis. SEM and TEM analysis of the as-synthesized AAOs reveal uniform, ordered nanotubes with pore diameters of 18 nm, which are further characterized with Kr physisorption, XRD and FTIR spectroscopy. After impregnation of the AAOs with Ru, the presence of Ru nanoparticles inside the tubular pores is evidenced clearly for the first time via HAADF-STEM-EDX.

View Article and Find Full Text PDF

Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative C nuclear magnetic resonance (C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake.

View Article and Find Full Text PDF

The aqueous Ru/C-catalyzed hydrogenolysis of biomass-based polyols such as erythritol, xylitol, sorbitol, and cellobitol is studied under neutral and acidic conditions. For the first time, the complete product spectrum of C2 C6 polyols is identified and, based on a thorough analysis of the reaction mixtures, a comprehensive reaction mechanism is proposed, which consists of (de)hydrogenation, epimerization, decarbonylation, and deoxygenation reactions. The data reveal that the Ru-catalyzed deoxygenation reaction is highly selective for the cleavage of terminal hydroxyl groups.

View Article and Find Full Text PDF