We present a reliable approach for producing high-performance ion-conducting gel polymer electrolytes (GPEs) based on the sodium chloride (NaCl)-integrated dual network hydrogel of poly (vinyl alcohol)/sodium alginate (PVA/SA) using a binary solvent system of ethylene glycol (EG) and water, providing exceptional ionic conductivity, mechanical strength, and self-healing properties. Different GPEs were produced via the freezing-thawing method using different v/v% of EG and water (named PVA/SA/EG). The best PVA/SA/EG GPE provided a maximum ionic conductivity of 25 mS cm, astonishing mechanical strength of 0.
View Article and Find Full Text PDFThe urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have gained attention owing to their low price and easy fabrication process. Charge transport layers (CTLs), transparent conductive electrodes (TCEs), and metallic top electrodes are important constituents of PSCs and Per-SCs, which affect the efficiency and stability of these cells.
View Article and Find Full Text PDFThis study demonstrates that the electrochemical doping of lanthanum nickelate (LNO) with cobalt ions is a promising strategy for enhancing its physical and electrochemical properties, which are critical for energy storage and conversion devices. LNO emerges as a promising hole transport layer (HTL) in solar cells due to its stability, large band gap, and high transparency. Nevertheless, its low conductivity and improperly aligned band positions are persistent problems.
View Article and Find Full Text PDFIt is highly desired and yet challenging to develop eco-friendly cation exchange membranes with a combination of good mechanical, electrochemical, and biocompatible properties with a rational economic efficiency for given applications. In this study, new biocompatible double network (DN) hydrogels were prepared based on a blend of modified K-Carrageenan (KC) and polyvinyl alcohol (PVA). Acrylic acid (AA)-grafted KC (KC-g-(PAA)) and (AA-co-tertbutyl acrylate (TBA))-grafted KC (KC-g-P(AA-co-TBA)) were synthesized through an in situ free radical copolymerization.
View Article and Find Full Text PDFCapacitive deionization (CDI), as an emerging eco-friendly electrochemical brackish water deionization technology, has widely benefited from carbon/metal oxide composite electrodes. However, this technique still requires further development of the electrode materials to tackle the ion removal capacity/rate issues. In the present work, we introduce a novel active carbon (AC)/CoO-SbO-SnO active material for hybrid electrode capacitive deionization (HECDI) systems.
View Article and Find Full Text PDFThe current work presents an iodine-mediated fine-tuning method for the electrical and electrochemical properties of reduced-graphene oxide (r-GO)/iodine - based electrodes for application in ITO-free polymer solar cells (PSCs). A multi-technique investigation was applied to correlate the morphological features of GO thin films (GO TFs) with iodine adsorption during the reduction process by HI vapor, electrochemical band gap, Fermi potential, charge carrier mobility and charge density of iodine/r-GO based electrodes. The electrical and electrochemical characteristics of iodine/r-GO electrodes changed considerably by alteration of their surface roughness and iodine content.
View Article and Find Full Text PDFTernary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C butyric acid methyl ester (PCBM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied.
View Article and Find Full Text PDFSoft actuators based on Ionic Polymer-Metal Composites (IPMCs) are of considerable interest for applications in biomedical devices and robotics. In this work, thin commercial and thick laboratory-prepared Nafion membranes were made into model IPMC actuator devices by incorporation of Pt electrode layers. In extensive electromechanical tests the maximum average tip displacement and maximum force generated were recorded.
View Article and Find Full Text PDFA sulfate ion-selective PVC membrane sensor based on 4-(4-bromophenyl)-2,6-diphenylpyrilium perchlorate (BDPP) as a novel sensing material is successfully developed. The electrode shows a good selectivity for sulfate ion with respect to common organic and inorganic anions. The sensor exhibits a good linear response with slope of -28.
View Article and Find Full Text PDFDiffusion-weighted imaging was employed to spatially map the distribution of the diffusion coefficient of water, D, in bare, water-soaked, Li(+)-exchanged, cast Nafion and in an ionic polymer-metal composite (IPMC) soft actuator element, prepared from this bare Nafion by impregnation with Pt electrodes. D was evaluated in two orthogonal directions: along one of the long dimensions of the sample (Dx) and through its thickness (Dz). D-maps of the IPMC element were obtained both in the absence of an applied potential and in situ during the application of a 3 V dc potential across the thickness of the sample.
View Article and Find Full Text PDFBy deploying a functioning electrochemical cell inside a Magnetic Resonance Imaging (MRI) instrument, images of the electrically-induced diffusion of water through a Li+ ion-exchanged Nafion ionic polymer film in the form of two-dimensional maps of proton density and transverse relaxation time, T2, were generated and changes in these images over time and with respect to changes made to the applied potential were followed.
View Article and Find Full Text PDF