Publications by authors named "Leila H Rashidi"

Photodynamic therapy (PDT) and photothermal therapy (PTT) have been emerging as attractive and promising methods for tumor treatment in clinical approaches. CuS nanoparticles are effective and cost-effective agents for PTT. Recently, it was observed that CuS nanoparticles are also excellence candidates for PDT.

View Article and Find Full Text PDF

The applications of afterglow particles for photodynamic activation and biological imaging have become a topical research area. For these applications, it is critical to have water soluble nanoparticles. However, the synthesis of water soluble afterglow nanoparticles like SrMgSiO:Eu, Dy is a challenging issue because most afterglow materials are very complicated in composition that cannot be synthesized by simple chemical routes.

View Article and Find Full Text PDF

Afterglow nanoparticles have been widely investigated as new agents for cancer imaging and as a light source for photodynamic activation for cancer treatment. For both applications, the targeting of the afterglow nanoparticles to tumor cells is an important and challenging issue. Here we report the strategies for targeting Sr3MgSi2O8:Eu(2+),Dy(3+) afterglow nanoparticles to tumor cells by conjugating with variety of targeting molecules such as folic acid, RGD peptide, and R-11 peptide.

View Article and Find Full Text PDF

Molecular modification of protoporphyrin IX (PpIX) was conducted to improve its water solubility and therapeutic performance for photodynamic therapy. The carboxylic acid and the two nitrogen atoms in the core of PpIX molecule were protonated following by conjugation with 3-aminopropyl triethoxysilane (APTES). Then, folic acid (FA) was conjugated to the APTES-coated PpIX (MPpIX) through chemical bonding between FA and protonated PpIX.

View Article and Find Full Text PDF