Publications by authors named "Leila Gharibshahi"

Cobalt nanoparticles were synthesized using the gamma radiolytic technique, and the particle size was found to be reduced from 12±1 to 7±1 nm by increasing the dose from 10 to 60 kGy. The UV-visible absorption spectra were measured and exhibited a steady absorption maxima at 517 nm in the UV region, which blue-shifted toward a lower wavelength with a decrease in particle size. By taking the conduction electrons of an isolated particle that are not entirely free but are instead bound to their respective quantum levels, the optical absorption of the cobalt nanoparticles can be calculated and simulated via intra-band quantum excitation for particle sizes comparable to the measured ones.

View Article and Find Full Text PDF

Very narrow and pure silver nanoparticles were synthesized by modified thermal treatment method via oxygen and nitrogen flow in succession. The structural and optical properties of the calcined silver nanoparticles at 600°C with diverse Poly(vinylpyrrolidone) concentrations varied from 2% to 4% were studied by means of different techniques. Fourier transform infrared spectroscopy was used to monitor the production of pure Ag nanoparticles at a given Poly(vinylpyrrolidone) concentration.

View Article and Find Full Text PDF

Gamma radiolytic synthesis was used to produce size-controlled spherical platinum nanoparticles from an aqueous solution containing platinum tetraammine and polyvinyl pyrrolidone. The structural characterizations were performed using X-ray diffraction, and transmission electron microscopy. The transmission electron microscopy was used to determine the average particle diameter, which decreased from 4.

View Article and Find Full Text PDF

The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities.

View Article and Find Full Text PDF