The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23F*, V31K*, and R44K*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of , along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and (strain IP 5832), and Gram-negative bacteria such as (ATCC 28753 and 2943 strains) and (MG1655 and K12 strains).
View Article and Find Full Text PDFCombining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp).
View Article and Find Full Text PDFThe need to develop new antimicrobial peptides is due to the high resistance of pathogenic bacteria to traditional antibiotics now and in the future. The creation of synthetic peptide constructs is a common and successful approach to the development of new antimicrobial peptides. In this work, we use a simple, flexible, and scalable technique to create hybrid antimicrobial peptides containing amyloidogenic regions of the ribosomal S1 protein from .
View Article and Find Full Text PDFUnder certain conditions, many proteins/peptides are capable of self-assembly into various supramolecular formations: fibrils, films, amyloid gels. Such formations can be associated with pathological phenomena, for example, with various neurodegenerative diseases in humans (Alzheimer's, Parkinson's and others), or perform various functions in the body, both in humans and in representatives of other domains of life. Recently, more and more data have appeared confirming the ability of many known and, probably, not yet studied proteins/peptides, to self-assemble into quaternary structures.
View Article and Find Full Text PDFThe development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide".
View Article and Find Full Text PDFControlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the "parent" protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning.
View Article and Find Full Text PDFStructural S1 domains belong to the superfamily of oligosaccharide/oligonucleotide-binding fold domains, which are highly conserved from prokaryotes to higher eukaryotes and able to function in RNA binding. An important feature of this family is the presence of several copies of the structural domain, the number of which is determined in a strictly limited range from one to six. Despite the strong tendency for the aggregation of several amyloidogenic regions in the family of the ribosomal S1 proteins, their fibril formation process is still poorly understood.
View Article and Find Full Text PDFWe performed a comparative study of the process of amyloid formation by short homologous peptides with a substitution of aspartate for glutamate in position 2 - VDSWNVLVAG (AspNB) and VESWNVLVAG (GluNB) - with unblocked termini. Peptide AspNB (residues 166-175) corresponded to the predicted amyloidogenic region of the protein glucantransferase Bgl2 from the Saccharomyces cerevisiae cell wall. The process of amyloid formation was monitored by fluorescence spectroscopy (FS), electron microscopy (EM), tandem mass spectrometry (TMS), and X-ray diffraction (XD) methods.
View Article and Find Full Text PDF(N(In))-Formyl protective group of tryptophan has been introduced as a base/nucleophile-labile protective group. It has long been known that a free Nα-amino group of the peptide can serve as a nucleophile: an irreversible formyl N(In) → NH(2) transfer is consistently observed when deformylation is performed last on an otherwise deprotected peptide that possesses free Nα-amino group. Obviously, this particular side reaction should be expected any time free amino group is exposed to Trp(For), but, at the best of our knowledge, has never been reported in the course of Boc-SPPS.
View Article and Find Full Text PDFZervamicin IIB is a 16 amino acid peptaibol that forms voltage dependent ion channels with multilevel conductance states in planar lipid bilayers and vesicular systems. Stability of the hinge region and intermolecular interactions were investigated in the N- and C-terminally spin-labelled peptide analogues. Intermolecular and intramolecular paramagnetic enhancement indicates that zervamicin behaves as a rigid helical rod in methanol solution.
View Article and Find Full Text PDF