In this study, lead removal from aqueous solutions using biochar derived from olive mill solid and liquid wastes has been investigated by applying batch experiments and geochemical modelling. The batch adsorption experiments included the assessment of several key parameters such as the contact time (kinetic), initial concentration (isotherm), pH, adsorbent dose, and the presence of competitive cations, whilst the geochemical modelling focused on the involved adsorption mechanisms using the PHREEQC code. The kinetic studies showed that lead adsorption is a relatively fast process, where intraparticle diffusion is the rate-limiting step.
View Article and Find Full Text PDFDuring the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils.
View Article and Find Full Text PDFCharacterization of the biofilm growing on stainless steel (SS) in untreated (UTUWW) and treated (TUWW) urban wastewaters was performed. In both media, the first phase of biofilm growth was aerobic, when the genera and (iron oxidizing bacteria [IOB]) and the genera , , and (sulfur oxidizing bacteria [SOB]) were identified. In the second phase, established after immersion for 7 days, the high amount of EPS inhibited the access of oxygen and promoted the growth of anaerobic bacteria, which were the genus (iron-reducing bacterium [IRB]) and the genera , , and (sulfate-reducing bacteria [SRB]).
View Article and Find Full Text PDFThe olive oil industry is an important economic sector in Mediterranean countries. However, oil production is unfortunately accompanied by the generation of huge amounts of olive mill solid wastes (OMSW) and olive mill wastewater (OMWW). In the present study, a strategy is proposed for converting these olive mill wastes into biochar through pyrolysis, for their later use as an organic amendment in agriculture.
View Article and Find Full Text PDFPentachlorophenol (PCP) is a toxic compound which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Fungal bioremediation is an emerging approach to rehabilitating areas fouled by recalcitrant xenobiotics.
View Article and Find Full Text PDFWe examined the biotransformation of benzothiazole derivatives (BTHs) by an axenic microbial culture. A Gram-negative bacterium, tentatively named as strain HKT554 and identified as Pseudomonas putida, was able to transform not only benzothiazole and 2-mercaptobenzothiazole but also 2-methylthiobenzothiazole, which was previously reported as the dead-end product of wastewater treatment. GC/MS analysis of the solid-phase extract of the culture broth showed the formation of 2-(3H)-benzothiazolone/2-hydroxybenzothiazole from benzothiazole.
View Article and Find Full Text PDFTwo lactic acid bacteria (LAB) were selected from 100 LAB isolated from various sea products to examine their use in Dicentrarchus labrax preservation. The isolates, tentatively named strain nr 3 and 7, were identified as Lactobacillus plantarum and L. pentosus, respectively.
View Article and Find Full Text PDFMicrobial degradation of thiodiglycol (bis(2-hydroxyethyl)sulfide, TDG) with petroleum-desulfurizing soil bacteria was examined. Among the bacteria tested, several strains belonging to the genera Rhodococcus and Gordonia grew on TDG as the sole sulfur source. The selected strain Rhodococcus sp.
View Article and Find Full Text PDF