The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos.
View Article and Find Full Text PDFDuring the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development.
View Article and Find Full Text PDFOur understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown.
View Article and Find Full Text PDFCurrent knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development.
View Article and Find Full Text PDFCurrent understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac.
View Article and Find Full Text PDFThere were errors published in Development 142, 3151-3165.In the issue published online on 22 September 2015, Fig. 3 was mislabelled: panels A, B, C and D should have been B, C, D and A, respectively.
View Article and Find Full Text PDFHere, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression.
View Article and Find Full Text PDF