Phosphorus (P) is one of the limiting macronutrients for algal growth in marine environments. Microalgae have developed adaptation mechanisms to P limitation that involve remodelling of internal phosphate resources and accumulation of lipids. Here, we used in silico analyses to identify the P-stress regulator PtPSR (Phaeodactylum tricornutum phosphorus starvation response) in the diatom P.
View Article and Find Full Text PDFDuring plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how this coordination is achieved. Here, we investigated coordination in seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and cell shape in root tips.
View Article and Find Full Text PDFPhosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2017
Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations.
View Article and Find Full Text PDFAlgal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum.
View Article and Find Full Text PDF