Publications by authors named "Leighanne Gallington"

Complex molten chloride salt mixtures of uranium, magnesium, and sodium are top candidates for promising nuclear energy technologies to produce electricity based on molten salt reactors. From a local structural perspective, LaCl is similar to UCl and hence a good proxy to study these complex salt mixtures. As fission products, lanthanide salts and their mixtures are also very important in their own right.

View Article and Find Full Text PDF

Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries can address crucial challenges regarding insufficient battery cycling life and energy density. The demonstration of long-cycling dendrite-free all-solid-state lithium metal batteries requires precise tailoring of lithium-ion transport of solid-state electrolytes (SSEs). In this work, a proof of concept is reported for precise tailoring of lithium-ion transport of a halide SSE, LiInCl, including intragranular (within grains) but also intergranular (between grains) lithium-ion transport.

View Article and Find Full Text PDF

The recent breakthrough in confining five or more atomic species in nanocatalysts, referred to as high-entropy alloy nanocatalysts (HEAs), has revealed the possibilities of multielemental interactions that can surpass the limitations of binary and ternary electrocatalysts. The wide range of potential surface configurations in HEAs, however, presents a significant challenge in resolving active structural motifs, preventing the establishment of structure-function relationships for rational catalyst design and optimization. We present a methodology for creating sub-5 nm HEAs using an aqueous-based peptide-directed route.

View Article and Find Full Text PDF

Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FE ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods.

View Article and Find Full Text PDF

Designing Pb-free relaxors with both a high capacitive energy density () and high storage efficiency (η) remains a remarkable challenge for cutting-edge pulsed power technologies. Local compositional heterogeneity is crucial for achieving complex polar structure in solid solution relaxors, but its role in optimizing energy storage properties is often overlooked. Here, we report that an exceptionally high of 15.

View Article and Find Full Text PDF

Dielectric capacitors have captured substantial attention for advanced electrical and electronic systems. Developing dielectrics with high energy density and high storage efficiency is challenging owing to the high compositional diversity and the lack of general guidelines. Herein, we propose a map that captures the structural distortion (δ) and tolerance factor () of perovskites to design Pb-free relaxors with extremely high capacitive energy storage.

View Article and Find Full Text PDF

Flat-field calibration of X-ray area detectors is a challenge due to the inability to generate an X-ray flat-field at the selected photon energy the beamline operates at, which has a strong influence on the measurement behavior of the detector. A method is presented in which a simulated flat-field correction is calculated without flat-field measurements. Instead, a series of quick scattering measurements from an amorphous scatterer is used to calculate a flat-field response.

View Article and Find Full Text PDF

Chemical design of lead-free relaxors with simultaneously high energy density () and high efficiency (η) for capacitive energy-storage has been a big challenge for advanced electronic systems. The current situation indicates that realizing such superior energy-storage properties requires highly complex chemical components. Herein, we demonstrate that, via local structure design, an ultrahigh of 10.

View Article and Find Full Text PDF

Layered O3-type transition metal oxides are promising cathode candidates for high-energy-density Li-ion batteries. However, the structural instability at the highly delithiated state and low kinetics at the fully lithiated state are arduous challenges to overcome. Here, a facile approach is developed to make secondary particles of Ni-rich materials with nanosheet primary grains.

View Article and Find Full Text PDF

The lifespan of lithium-ion batteries varies enormously from fundamental study to practical applications. This big difference has been typically ascribed to the high degree of uncertainty in unpredictable and complicated operation conditions in real-life applications. Here, we report that the pause of the charging-discharging process, which is frequently operated in practice but rarely studied in academics, is an important reason for the performance degradation of the NCM111 cathode.

View Article and Find Full Text PDF

Lanthanides are important fission products in molten salt reactors, and understanding their structure and that of their mixtures is relevant to many scientific and technological problems including the recovery and separation of rare earth elements using molten salt electrolysis. The literature on molten salts and specifically on LaCl and LaCl-NaCl mixtures is often fragmented, with different experiments and simulations coinciding in their explanation for certain structural results but contradicting or questioning for others. Given the very practical importance that actinide and lanthanide salts have for energy applications, it is imperative to arrive at a clear unified picture of their local and intermediate-range structure in the neat molten state and when mixed with other salts.

View Article and Find Full Text PDF

How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation.

View Article and Find Full Text PDF

The recent reports of superconductivity in Nd Sr NiO/SrTiO heterostructures have reinvigorated interest in potential superconductivity of low-oxidation state nickelates. Synthesis of Ni-containing compounds is notoriously difficult. In the current work, a combined sol-gel combustion and high-pressure annealing technique was employed to prepare polycrystalline perovskite Nd Sr NiO ( = 0, 0.

View Article and Find Full Text PDF

In this work, we resolve a long-standing issue concerning the local structure of molten MgCl by employing a multimodal approach, including X-ray scattering and Raman spectroscopy, along with the theoretical modeling of the experimental spectra based on molecular dynamics (AIMD) simulations utilizing several density functional theory (DFT) methods. We demonstrate the reliability of AIMD simulations in achieving excellent agreement between the experimental and simulated spectra for MgCl and 50 mol % MgCl + 50 mol % KCl, and ZnCl, thus allowing structural insights not directly available from experiment alone. A thorough computational analysis using five DFT methods provides a convergent view that octahedrally coordinated magnesium in pure MgCl upon melting preferentially coordinates with five chloride anions to form distorted square pyramidal polyhedra that are connected via corners and to a lesser degree via edges.

View Article and Find Full Text PDF

Understanding the structure and properties of refractory oxides is critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active learner, which is initialized by x-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multiphase potential is generated for a canonical example of the archetypal refractory oxide, HfO_{2}, by drawing a minimum number of training configurations from room temperature to the liquid state at ∼2900 °C.

View Article and Find Full Text PDF

Solvent-assisted ligand incorporation is an excellent method for the post-synthetic functionalization of Zr-based metal-organic frameworks (MOFs), as carboxylate-derivative functionalities readily coordinate to the Zr nodes by displacing node-based aqua and terminal hydroxo ligands. In this study, a photocatalytically active ruthenium complex Ru(bpy)(dcbpy), that is, bis-(2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine)ruthenium, was installed in the mono-protonated (carboxylic acid) form within NU-1000 SALI. Crystallographic information regarding the siting of the ruthenium complex within the MOF pores is obtained by difference envelope density analysis.

View Article and Find Full Text PDF

Various metal oxide clusters upward of 8 atoms (Cu, Cd, Co, Fe, Ga, Mn, Mo, Ni, Sn, W, Zn, In, and Al) were incorporated into the pores of the metal-organic framework (MOF) NU-1000 via atomic layer deposition (ALD) and tested via high-throughput screening for catalytic isomerization and selective hydrogenation of propyne. Cu and Co were found to be the most active for propyne hydrogenation to propylene, and synergistic bimetallic combinations of Co and Zn, along with standalone Zn and Cd, were established as the most active for conversion to the isomerized product, propadiene. The combination of Co and Zn in NU-1000 diminished the propensity for full hydrogenation to propane as well as coking compared to its individual components.

View Article and Find Full Text PDF

This article addresses the non-Debye-Waller temperature behavior in the intermediate range order for molten MgCl and its mixtures with KCl from a theory, Molecular Dynamics, and experimental X-ray scattering perspective and puts these findings in the context of discussions and controversies extending at least four decades. We find that these liquids are defined by two structural motifs. The first motif is associated with chains of positive-negative charge alternation; the second motif, which results in a prepeak in the structure function (), is associated with the interaction of Mg and Cl ions that do not belong to the same charge alternation chain or aggregate.

View Article and Find Full Text PDF

The postmodification of metal organic frameworks (MOFs) affords exceedingly high surface area materials with precisely installed chemical features, which provide new opportunities for detailed structure-function correlation in the field of catalysis. Here, we significantly expand upon the number of vapor-phase postmodification processes reported to date through screening a library of atomic layer deposition (ALD) precursors, which span metals across the periodic table and which include ligands from four distinct precursor classes. With a large library of precursors and synthesis conditions, we discern trends in the compatibility of precursor classes for well-behaved ALD in MOFs (AIM) and identify challenges and solutions to more precise postsynthetic modification.

View Article and Find Full Text PDF

The development of technologies for nuclear reactors based on molten salts has seen a big resurgence. The success of thermodynamic models for these hinges in part on our ability to predict at the atomistic level the behavior of pure salts and their mixtures under a range of conditions. In this letter, we present high-energy X-ray scattering experiments and molecular dynamics simulations that describe the molten structure of mixtures of MgCl and KCl.

View Article and Find Full Text PDF

Many functional materials have relatively low decomposition temperatures (T≤ 400 °C), which makes their synthesis challenging using conventional high-temperature solid-state chemistry. Therefore, non-conventional techniques such as metathesis, hydrothermal, and solution chemistry are often employed to access low-temperature phases; the discovery of new chemistries is needed to expand access to these phases. This contribution discusses the use of triphenylphosphine (PPh) as a molten flux to synthesize superconducting iron selenide (FeSe) at low temperature (T = 325 °C).

View Article and Find Full Text PDF

A single-step method for the preparation of metastable ε-FeN nanoparticles by combustion of reactive gels containing iron nitrate (Fe(NO)) and hexamethylenetetramine (CHN) in an inert atmosphere is reported. The results of Fourier transform infrared spectroscopy (FTIR) and thermal analysis coupled with dynamic mass spectrometry revealed that the exothermic decomposition of a coordination complex formed between Fe(NO) and HMTA is responsible for the formation of ε-FeN nanoscale particles with sizes of 5-15 nm. The magnetic properties between 5 and 350 K are characterized using a superconducting quantum interference device (SQUID) magnetometer, revealing a ferromagnetic behavior with a low-temperature magnetic moment of 1.

View Article and Find Full Text PDF