Publications by authors named "Leighanne A Brammer"

The thiamin diphosphate (ThDP)-dependent enzyme 1-deoxy-D-xylulose 5-phosphate (DXP) synthase carries out the condensation of pyruvate as a 2-hydroxyethyl donor with d-glyceraldehyde-3-phosphate (d-GAP) as acceptor forming DXP. Toward understanding catalysis of this potential anti-infective drug target, we examined the pathway of the enzyme using steady state and presteady state kinetic methods. It was found that DXP synthase stabilizes the ThDP-bound predecarboxylation intermediate formed between ThDP and pyruvate (C2α-lactylThDP or LThDP) in the absence of D-GAP, while addition of D-GAP enhanced the rate of decarboxylation by at least 600-fold.

View Article and Find Full Text PDF

Emerging resistance of human pathogens to anti-infective agents make it necessary to develop new agents to treat infection. The methylerythritol phosphate pathway has been identified as an anti-infective target, as this essential isoprenoid biosynthetic pathway is widespread in human pathogens but absent in humans. The first enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase, catalyzes the formation of DXP via condensation of D-glyceraldehyde 3-phosphate (D-GAP) and pyruvate in a thiamine diphosphate-dependent manner.

View Article and Find Full Text PDF

A study of DXP synthase has revealed flexibility in the acceptor substrate binding pocket for nonpolar substrates and has uncovered new details of the catalytic mechanism to show that pyruvate can act as both donor and acceptor substrate.

View Article and Find Full Text PDF

Screening of the commercially available Ph.D.-7 phage-displayed heptapeptide library for peptides that bind immobilized Zn2+ resulted in the repeated selection of the peptide HAIYPRH, although binding assays indicated that HAIYPRH is not a zinc-binding peptide.

View Article and Find Full Text PDF