The MAPK pathway is frequently activated in many human cancers, particularly melanomas. A single-nucleotide mutation in BRAF resulting in the substitution of glutamic acid for valine (V(600E)) causes constitutive activation of the downstream MAPK pathway. Selective BRAF and MEK inhibitor therapies have demonstrated remarkable antitumor responses in BRAF(V600) (E)-mutant melanoma patients.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) represent a promising therapeutic modality for managing cancer. Here, we report a novel humanized ADC that targets the tetraspanin-like protein TM4SF1. TM4SF1 is highly expressed on the plasma membranes of many human cancer cells and also on the endothelial cells lining tumor blood vessels.
View Article and Find Full Text PDFDinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure.
View Article and Find Full Text PDFUnlabelled: Next-generation sequencing was used to identify Notch mutations in a large collection of diverse solid tumors. NOTCH1 and NOTCH2 rearrangements leading to constitutive receptor activation were confined to triple-negative breast cancers (TNBC; 6 of 66 tumors). TNBC cell lines with NOTCH1 rearrangements associated with high levels of activated NOTCH1 (N1-ICD) were sensitive to the gamma-secretase inhibitor (GSI) MRK-003, both alone and in combination with paclitaxel, in vitro and in vivo, whereas cell lines with NOTCH2 rearrangements were resistant to GSI.
View Article and Find Full Text PDFUnlabelled: TBK1 (TANK-binding kinase 1) is a noncanonical IκB protein kinase that phosphorylates and activates downstream targets such as IRF3 and c-Rel and, mediates NF-κB activation in cancer. Previous reports demonstrated synthetic lethality of TBK1 with mutant KRAS in non-small cell lung cancer (NSCLC); thus, TBK1 could be a novel target for treatment of KRAS-mutant NSCLC. Here, the effect of TBK1 on proliferation in a panel of cancer cells by both genetic and pharmacologic approaches was evaluated.
View Article and Find Full Text PDFInhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition.
View Article and Find Full Text PDFThe high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical efficacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway.
View Article and Find Full Text PDFActivation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT.
View Article and Find Full Text PDFWe tested the use of the small-molecule Inhibitor of Apoptosis Protein (IAP) inhibitor LBW242 in combination with the standard-of-care therapies of irradiation and temozolomide for malignant gliomas. In vitro assays demonstrated that LBW242 enhanced the cytotoxic activity of radiotherapy, and clonogenic assays showed that the combination therapy led to a synergistic anti-glioma effect in multiple cell lines. Neurosphere assays revealed that the combination of radiation and LBW242 led to a pro-apoptotic effect in these glioma-initiating cell-enriched assays, with a corresponding inhibition of primary tumor cell growth.
View Article and Find Full Text PDFThe inhibitor of apoptosis proteins (IAPs) have recently been shown to modulate nuclear factor κB (NF-κB) signaling downstream of tumor necrosis factor (TNF) family receptors, positioning them as essential survival factors in several cancer cell lines, as indicated by the cytotoxic activity of several novel small molecule IAP antagonists. In addition to roles in cancer, increasing evidence suggests that IAPs have an important function in immunity; however, the impact of IAP antagonists on antitumor immune responses is unknown. In this study, we examine the consequences of IAP antagonism on T cell function in vitro and in the context of a tumor vaccine in vivo.
View Article and Find Full Text PDFPurpose: Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) is a member of tumor necrosis factor family and it is important for ligand induced apoptosis in tumor cells. TRAIL has been shown to be synergistic with a variety of chemotherapies and targeted agents. In the study, a combination of TRAIL and a histone deacetylase inhibitor LBH589 was studied in mesothelioma cell lines.
View Article and Find Full Text PDFMultiple receptor tyrosine kinases (RTKs), including PDGFR, have been validated as therapeutic targets in glioblastoma multiforme (GBM), yet inhibitors of RTKs have had limited clinical success. As various antiapoptotic mechanisms render GBM cells resistant to chemo- and radiotherapy, we hypothesized that these antiapoptotic mechanisms also confer resistance to RTK inhibition. We found that in vitro inhibition of PDGFR in human GBM cells initiated the intrinsic pathway of apoptosis, as evidenced by mitochondrial outer membrane permeabilization, but downstream caspase activation was blocked by inhibitor of apoptosis proteins (IAPs).
View Article and Find Full Text PDFSmac mimetic compounds targeting the inhibitor of apoptosis proteins (IAP) baculoviral IAP repeat-3 domain are presumed to reduce the threshold for apoptotic cell death by alleviating caspase-9 repression. We explored this tenet in an unbiased manner by searching for small interfering RNAs that are able to confer resistance to the Smac mimetic compound LBW242. Among the screening hits were multiple components of the tumor necrosis factor alpha (TNFalpha) signaling pathway as well as X-linked inhibitor of apoptosis (XIAP) itself.
View Article and Find Full Text PDFMembers of the inhibitor of apoptosis protein (IAP) family play a role in mediating apoptosis. Studies suggest that these proteins may be a viable target in leukemia because they have been found to be variably expressed in acute leukemias and are associated with chemosensitivity, chemoresistance, disease progression, remission, and patient survival. Another promising therapeutic target, FLT3, is mutated in about one third of acute myelogenous leukemia (AML) patients; promising results have recently been achieved in clinical trials investigating the effects of the protein tyrosine kinase inhibitor PKC412 on AML patients harboring mutations in the FLT3 protein.
View Article and Find Full Text PDFSecond mitochondria-derived activator of caspases (Smac) promotes apoptosis via activation of caspases. Here we show that a low-molecular-weight Smac mimetic LBW242 induces apoptosis in multiple myeloma (MM) cells resistant to conventional and bortezomib therapies. Examination of purified patient MM cells demonstrated similar results, without significant cytotoxicity against normal lymphocytes and bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFInhibitor of apoptosis proteins (IAPs) such as XIAP subvert apoptosis by binding and inhibiting caspases. Because occupation of the XIAP BIR3 peptide binding pocket by Smac abolishes the XIAP-caspase 9 interaction, it is a proapoptotic event of great therapeutic interest. An assay for pocket binding was developed based on the displacement of Smac 7-mer from BIR3.
View Article and Find Full Text PDFTumor cells have evolved numerous mechanisms to thwart apoptosis. As our understanding of the machinery which regulates cell-death evolves, these apoptotic defects have fallen into the crosshairs of cancer drug developers. The issues raised in exploiting these alterations for therapeutic benefit are discussed.
View Article and Find Full Text PDFTo identify genes that mediate transforming growth factor-beta (TGF-beta) signaling, a colorectal cancer cell line that was sensitive to the growth inhibitory effects of this cytokine was created. We then determined the global gene expression profiles of these cells, and those of HaCaT human keratinocytes, in the presence and absence of TGF-beta. Of the several genes identified in this screen, DEC1 was of particular note in light of the rapidity and consistency of its induction and its potential biochemical activities.
View Article and Find Full Text PDF