Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations.
View Article and Find Full Text PDFBioengineering (Basel)
September 2023
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This study used the N-terminal functionalization of collagen with alginate oligomers to improve toughness and extensibility through metal-ion complexation.
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2022
There remains a need for stiffer collagen hydrogels for tissue engineering and disease modeling applications. Pre-glycation, or glycation of collagen in solution prior to gelation, has been shown to increase the mechanics of collagen hydrogels while maintaining high viability of encapsulated cells. The stiffness of glycated collagen gels can be increased by increasing the collagen concentration, sugar concentration, and glycation time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity.
View Article and Find Full Text PDFThis article describes the compositional, mechanical, and structural differences between collagen gels fabricated from different sources and processing methods. Despite extensive use of collagen in the manufacturing of biomaterials and implants, there is little information as to the variation in properties based on collagen source or processing methods. As such, differences in purity and composition may affect gel structure and mechanical performance.
View Article and Find Full Text PDFA multifunctional biodegradable brush polymer-drug conjugate (BPDC) is developed for the co-delivery of hydrophobic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) chemotherapeutics, as well as a tumor imaging agent. A novel ternary copolymer of conventional, acetylenyl-functionalized and allyl-functionalized lactides is prepared to serve as the backbone precursor of BPDC. Acetylenyl groups of the copolymer are then reacted with poly(ethylene glycol) (PEG) side chains and cyanine5.
View Article and Find Full Text PDF