Dynamical decoupling techniques constitute an integral part of many quantum sensing platforms, often leading to orders-of-magnitude improvements in coherence time and sensitivity. Most ac sensing sequences involve a periodic echolike structure, in which the target signal is synchronized with the echo period. We show that for strongly interacting systems, this construction leads to a fundamental sensitivity limit associated with imperfect interaction decoupling.
View Article and Find Full Text PDFUnderstanding the microscopic mechanisms of thermalization in closed quantum systems is among the key challenges in modern quantum many-body physics. We demonstrate a method to probe local thermalization in a large-scale many-body system by exploiting its inherent disorder and use this to uncover the thermalization mechanisms in a three-dimensional, dipolar-interacting spin system with tunable interactions. Utilizing advanced Hamiltonian engineering techniques to explore a range of spin Hamiltonians, we observe a striking change in the characteristic shape and timescale of local correlation decay as we vary the engineered exchange anisotropy.
View Article and Find Full Text PDFIn quantum mechanics, measurements cause wavefunction collapse that yields precise outcomes, whereas for non-commuting observables such as position and momentum Heisenberg's uncertainty principle limits the intrinsic precision of a state. Although theoretical work has demonstrated that it should be possible to perform simultaneous non-commuting measurements and has revealed the limits on measurement outcomes, only recently has the dynamics of the quantum state been discussed. To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables to a superconducting qubit.
View Article and Find Full Text PDFIn this work, we demonstrate an improved method for iterative phase retrieval with application to coherent diffractive imaging. By introducing additional operations inside the support term of existing iterated projection algorithms, we demonstrate improved convergence speed, higher success rate and, in some cases, improved reconstruction quality. New algorithms take a particularly simple form with the introduction of a generalized projection-based reflector.
View Article and Find Full Text PDFWe extend coherent diffraction imaging (CDI) to a high numerical aperture reflection mode geometry for the first time. We derive a coordinate transform that allows us to rewrite the recorded far-field scatter pattern from a tilted object as a uniformly spaced Fourier transform. Using this approach, FFTs in standard iterative phase retrieval algorithms can be used to significantly speed up the image reconstruction times.
View Article and Find Full Text PDF