Protein phosphorylation is a central mechanism of cellular signal transduction in living organisms. Phosphoproteomic studies systematically catalogue and characterize alterations in phosphorylation states across multiple cellular conditions and are often incorporated into global proteomics experiments. Previously, we found that spin column-based Fe-NTA enrichment integrated well with our workflow but remained a bottleneck for methods that require higher throughput or a scale that is beyond the capacity of these columns.
View Article and Find Full Text PDFIon channels are drug targets for neurologic, cardiac, and immunologic diseases. Many disease-associated mutations and drugs modulate voltage-gated ion channel activation and inactivation, suggesting that characterizing state-dependent effects of test compounds at an early stage of drug development can be of great benefit. Historically, the effects of compounds on ion channel biophysical properties and voltage-dependent activation/inactivation could only be assessed by using low-throughput, manual patch clamp recording techniques.
View Article and Find Full Text PDFCross-linking mass spectrometry (XL-MS) is an attractive method for the proteome-wide characterization of protein structures and interactions. Currently, the depth of in vivo XL-MS studies is lagging behind the established applications to cell lysates, because cross-linking reagents that can penetrate intact cells and strategies to enrich cross-linked peptides lack efficiency. To tackle these limitations, we have developed a phosphonate-containing cross-linker, tBu-PhoX, that efficiently permeates various biological membranes and can be robustly enriched using routine immobilized metal ion affinity chromatography.
View Article and Find Full Text PDFCleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923-55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models.
View Article and Find Full Text PDFNovel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages.
View Article and Find Full Text PDFThe 99 amino acid C-terminal fragment of amyloid precursor protein (C99), consisting of a single transmembrane (TM) helix, is known to form homodimers. Homodimers can be processed by γ-secretase to produce amyloid-β (Aβ) protein, which is implicated in Alzheimer's disease (AD). While knowledge of the structure of C99 homodimers is of great importance, experimental NMR studies and simulations have produced varying structural models, including right-handed and left-handed coiled-coils.
View Article and Find Full Text PDFWhen BaZrO(3) is doped with Y in 12.5% of Zr sites, density functional theory with the PBE functional predicts octahedral distortions within a cubic phase yielding a greater variety of proton binding sites than undoped BaZrO(3). Proton binding sites, transition states, and normal modes are found and used to calculate transition state theory rate constants.
View Article and Find Full Text PDFIn the present paper, the authors focus on proton conduction pathways in a cubic perovskite KTaO(3) and an orthorhombic perovskite SrZrO(3). Density functional theory with a generalized gradient approximation is used to find proton binding sites. The nudged elastic band method is used to find transition states between minima.
View Article and Find Full Text PDF