The effective assessment of wounds, both acute and hard-to-heal, is an important component in the delivery by wound care practitioners of efficacious wound care for patients. Improved wound diagnosis, optimising wound treatment regimens, and enhanced prevention of wounds aid in providing patients with a better quality of life (QoL). There is significant potential for the use of artificial intelligence (AI) in health-related areas such as wound care.
View Article and Find Full Text PDFIt is not currently possible to quantify regional-scale fossil fuel carbon dioxide (ffCO) emissions with high accuracy in near real time. Existing atmospheric methods for separating ffCO from large natural carbon dioxide variations are constrained by sampling limitations, so that estimates of regional changes in ffCO emissions, such as those occurring in response to coronavirus disease 2019 (COVID-19) lockdowns, rely on indirect activity data. We present a method for quantifying regional signals of ffCO based on continuous atmospheric measurements of oxygen and carbon dioxide combined into the tracer "atmospheric potential oxygen" (APO).
View Article and Find Full Text PDFBiocompatible AlO-hBN ceramic was sintered from AlN and BO precursors by reaction hot pressing at 1750 °C and 30 MPa for 8 min. The ceramic was compared to nonreactive (NR) one sintered from AlO and BN under the same sintering conditions. The NR ceramic possesses 9% porosity as opposed to only 2% porosity for the reaction sintered AlO-hBN.
View Article and Find Full Text PDFPressure ulcers are a common occurrence of damage to skin. Severity ranges from slightly discoloured skin to full thickness tissue damage which can be fatal in some cases. Engineering effort, typically developing computational models had made significant progress in the understanding and demonstration of the formation mechanism of pressure ulcers with the aetiology of excessive stress; however, relatively limited attempts had been made to develop relevant models for pressure ulcers caused by ischemia.
View Article and Find Full Text PDFA new approach to achieving chemical mapping on a nanoscale is described that can provide 2D and tomographic images of surface and near-surface structure. The method comprises dissolving material from the surface of the sample by applying a series of aliquots of solvent, then analyzing their contents after removing them; in between exposures, the surface is imaged with atomic force microscopy. This technique relies on being able to compensate for any drift between images by use of software.
View Article and Find Full Text PDFThe rheological properties of synovial fluid (SF) are crucial to the performance of joint prostheses. During the development of joint prostheses, wear tests are performed, which simulate joint movements in diluted solutions (usually between 25 and 33% v/v) of bovine serum which has very different rheological properties compared with native SF, where rheology is maintained by hyaluronan. Consequently, there is a need to develop a more suitable artificial SF.
View Article and Find Full Text PDF