Chemical sensors based on a polymer coated quartz crystal microbalance (QCM) generally present poor molecular selectivity for compounds that contain similar functional groups and possess the same chemical properties. This paper shows for the first time that the selectivity and sensitivity of a poly(methyl methacrylate) (PMMA) based QCM sensor can be significantly enhanced for aromatic hydrocarbons by incorporating a plasticizer into the polymer film. The sensor was fabricated by spin coating PMMA onto a quartz crystal, and the influence of plasticizer type and amount on the response was evaluated.
View Article and Find Full Text PDFThis report compares the performance of polymer and carbon nanotube-polymer composite membranes on a quartz crystal microbalance (QCM) sensor for the detection of aromatic hydrocarbons (benzene, toluene, ethylbenzene, p-xylene and naphthalene) in aqueous solutions. Several different polymers (polystyrene, polystyrene-co-butadiene, polyisobutylene and polybutadiene) and types of functionalized carbon nanotubes (multi-walled and single-walled carbon nanotubes) were investigated at varying carbon nanotube (CNT) loading levels and film thicknesses. In a majority of instances, the difference in response between membranes comprising pure polymer and membranes containing 10% (w/w) carbon nanotubes were not statistically significant.
View Article and Find Full Text PDF