Publications by authors named "Leif Lindeman"

Current N-methyladenosine (mA) mapping methods need large amounts of RNA or are limited to cultured cells. Through optimized sample recovery and signal-to-noise ratio, we developed picogram-scale mA RNA immunoprecipitation and sequencing (picoMeRIP-seq) for studying mA in vivo in single cells and scarce cell types using standard laboratory equipment. We benchmark mA mapping on titrations of poly(A) RNA and embryonic stem cells and in single zebrafish zygotes, mouse oocytes and embryos.

View Article and Find Full Text PDF

Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations.

View Article and Find Full Text PDF
Article Synopsis
  • Ionizing radiation can cause oxidative stress, DNA damage, and epigenetic changes in aquatic organisms, which can either help them adapt or lead to negative effects.
  • A study exposed adult Daphnia magna to different levels of Co gamma radiation and analyzed various biological responses at molecular, cellular, and organismal levels.
  • Findings revealed increased global DNA methylation and changes in gene expression and reactive oxygen species over time, but no significant impact on overall fecundity, leading to a proposed model for understanding how epigenetic mechanisms respond to low-dose radiation stress.
View Article and Find Full Text PDF
Article Synopsis
  • Recent studies suggest that environmental chemicals may increase the risk of metabolic diseases by altering epigenetic mechanisms, affecting lipid metabolism and gene expression, particularly through the role of the Ezh2 enzyme.
  • The research utilized zebrafish embryos to evaluate how exposure to the Ezh1/2 inhibitor PF-06726304 and the chemical tributyltin (TBT) impacted lipid accumulation and chromatin status, revealing significant changes in epigenetic markers related to metabolic pathways.
  • Findings indicated that exposure to these chemicals led to increased lipid accumulation and differential gene expression, with specific alterations in chromatin accessibility influencing lipid metabolism and adipogenesis during zebrafish development.
View Article and Find Full Text PDF

The water flea is a keystone species in freshwater ecosystems and has been widely used as a model organism in environmental ecotoxicology. This aquatic crustacean is sensitive to environmental stressors and displays considerable plasticity in adapting to changing environmental conditions. Part of this plasticity may be due to epigenetic regulation of gene expression, including changes to DNA methylation and histone modifications.

View Article and Find Full Text PDF

Ionizing radiation is a recognized genotoxic agent, however, little is known about the role of the functional form of DNA in these processes. Post translational modifications on histone proteins control the organization of chromatin and hence control transcriptional responses that ultimately affect the phenotype. The purpose of this study was to investigate effects on chromatin caused by ionizing radiation in fish.

View Article and Find Full Text PDF

Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations.

View Article and Find Full Text PDF

Ionizing radiation causes a variety of effects, including DNA damage associated to cancers. However, the effects in progeny from irradiated parents is not well documented. Using zebrafish as a model, we previously found that parental exposure to ionizing radiation is associated with effects in offspring, such as increased hatching rates, deformities, increased DNA damage and reactive oxygen species.

View Article and Find Full Text PDF

A characteristic of anamniote development is a relatively long period of embryonic cell divisions in the absence of on-going transcription. In zebrafish, this period lasts for 10 cell cycles, or ∼3-h postfertilization, after which zygotic genome activation (ZGA) takes place during the midblastula transition. How the embryo establishes transcriptional competence and how ZGA is spatially and temporally regulated have not been examined until recently.

View Article and Find Full Text PDF

The zebrafish developmental transcription program is determined by temporal post-translational histone modifications established in a step-wise and combinatorial manner on specific promoters around the time of zygotic genome activation (ZGA). Here, we characterize this increasing epigenetic complexity before, during and after ZGA. H3K4me3/H3K27me3 co-enrichment prevails over H3K4me3/H3K9me3 at the time of ZGA.

View Article and Find Full Text PDF

A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription.

View Article and Find Full Text PDF

Background: Uncovering epigenetic states by chromatin immunoprecipitation and microarray hybridization (ChIP-chip) has significantly contributed to the understanding of gene regulation at the genome-scale level. Many studies have been carried out in mice and humans; however limited high-resolution information exists to date for non-mammalian vertebrate species.

Principal Findings: We report a 2.

View Article and Find Full Text PDF

Embryo development proceeds from a cascade of gene activation and repression events controlled by epigenetic modifications of DNA and histones. Little is known about epigenetic states in the developing zebrafish, despite its importance as a model organism. We report here DNA methylation and histone modification profiles of promoters of developmentally-regulated genes (pou5f1, sox2, sox3, klf4, nnr, otx1b, nes, vasa), as well as tert and bactin2, in zebrafish embryos at the mid-late blastula transition, shortly after embryonic genome activation.

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) is arguably the assay of choice to determine the genomic localization of DNA- or chromatin-binding proteins, including post-translationally modified histones, in cells. The increasing importance of the zebrafish, Danio rerio, as a model organism in functional genomics has recently sparked investigations of ChIP-based genome-scale mapping of modified histones on promoters, and studies on the role of specific transcription factors in developmental processes. ChIP assays used in these studies are cumbersome and conventionally require relatively large number of embryos.

View Article and Find Full Text PDF

Long-term culture of mesenchymal stem cells leads to a loss of differentiation capacity, the molecular mechanism of which remains not understood. We show here that expansion of adipose stem cells (ASCs) to late passage (replicative senescence) is associated with promoter-specific and global changes in epigenetic histone modifications. In undifferentiated ASCs, inactive adipogenic and myogenic promoters are enriched in a repressive combination of trimethylated H3K4 (H3K4m3) and H3K27m3 in the absence of H3K9m3, a heterochromatin mark.

View Article and Find Full Text PDF