Doping control is essential for sports, and untargeted detection of doping agents (UDDA) is the holy grail for anti-doping strategies. The present study examined major factors impacting UDDA with metabolomic data processing, including the use of blank samples, signal-to-noise ratio thresholds, and the minimum chromatographic peak intensity. Contrary to data processing in metabolomics studies, both blank sample use (either blank solvent or plasma) and marking of background compounds were found to be unnecessary for UDDA in biological samples, the first such report to the authors' knowledge.
View Article and Find Full Text PDFRapid and accurate identification of unknown compounds within suspicious samples confiscated for sports doping control and law enforcement drug testing is critical, but such analyses are often conducted manually and can be time-consuming. Here, we report a methodology for automated identification of unknown substances in confiscation samples by rapid automatic flow-injection analysis on a liquid chromatography coupled to high-resolution mass spectrometry system and identifying unknown compounds with Compound Discoverer software. The developed methodology was validated by comparing the automated identification results with those obtained from manual syringe-infusion experiments and manual tandem mass spectral library searches.
View Article and Find Full Text PDFSensors (Basel)
October 2020
Recently, biosensors have been used in an increasing number of different fields and disciplines due to their wide applicability, reproducibility, and selectivity. Three large disciplines in which this has become relevant has been the forensic, biometric, and cybersecurity fields. The call for novel noninvasive biosensors for these three applications has been a focus of research in these fields.
View Article and Find Full Text PDFThe research presented here shows a bridge between biochemistry and cryptography. Enzyme-based assays were used in a new methodology linked to ciphers and cipher systems. Three separate enzyme assays, alkaline phosphatase (ALP) (E.
View Article and Find Full Text PDF