Publications by authors named "Leif J Sherry"

Raman spectra were recorded experimentally and calculated theoretically for bithiophene, terthiophene, and quaterthiophene samples as a function of excitation polarization. Distinct spectral signatures were assigned and correlated to the molecular/unit cell orientation as determined by X-ray diffraction. The ability to predict molecular/unit cell orientation within organic crystals using polarized Raman spectroscopy was evaluated by predicting the unit cell orientation in a simulated terthiophene crystal given a random set of simulated polarized Raman spectra.

View Article and Find Full Text PDF

The plasmonic properties of single silver triangular nanoprisms are investigated using dark-field optical microscopy and spectroscopy. Two distinct localized surface plasmon resonances (LSPR) are observed. These are assigned as in-plane dipolar and quadrupolar plasmon excitations using electrodynamic modeling based on the discrete dipole approximation (DDA).

View Article and Find Full Text PDF

In this work, we use dark-field microscopy to observe a new plasmon resonance effect for a single silver nanocube in which the plasmon line shape has two distinct peaks when the particles are located on a glass substrate. The dependence of the resonance on nanocube size and shape is characterized, and it is found that the bluer peak has a higher figure of merit for chemical sensing applications than that for other particle shapes that have been studied previously. Comparison of the measured results with finite difference time domain (FDTD) electrodynamics calculations enables us to confirm the accuracy of our spectral assignments.

View Article and Find Full Text PDF

Eleven new quaternary rare-earth tellurides, CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Y), were prepared from solid-state reactions at 1123 K. These isostructural materials crystallize in the layered KZrCuS3 structure type in the orthorhombic space group Cmcm. The structure is composed of LnTe6 octahedra and ZnTe4 tetrahedra that share edges to form [LnZnTe3] layers.

View Article and Find Full Text PDF