Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose.
View Article and Find Full Text PDFCalcium bioaccessibility depends on the amount of soluble calcium under intestinal digestion. The changes in calcium during in vitro static digestion of α-lactalbumin and β-lactoglobulin in presence of calcium chloride (0 mM, 20 mM and 50 mM) were followed by combining electrochemical determination of free calcium with the determination of soluble calcium by inductively coupled plasma optical emission spectroscopy. α-Lactalbumin and, more evident, β-lactoglobulin were found to increase calcium bioaccessibility with increasing intestinal digestion time by around 5% and 10%, respectively, due to the complex binding of calcium to peptides formed from protein hydrolysis by gastrointestinal enzymes.
View Article and Find Full Text PDFAspartate (Asp) mononegative ion binds calcium through both carboxylates in contrast to binding through only the side chain carboxylate for mononegative glutamate (Glu), as shown by density functional theory (DFT) calculations. A stronger binding was confirmed electrochemically for Asp compared to Glu. From temperature dependence of binding constant, 15-37 °C investigated for aqueous 0.
View Article and Find Full Text PDFThe interactions of luteolin (Lut) with bovine serum albumin (BSA) mediated by Cu(II) were investigated by spectroscopic, calorimetric, and molecular dynamic (MD) methods. Fluorescence studies showed that the binding of Lut to BSA was significantly enhanced by Cu(II) coordination with the number of binding sites and binding constant increasing from = 1 and = 3.2 × 10 L·mol for Lut to = 2 and = 7.
View Article and Find Full Text PDFTyrosinase, widely distributed in nature, is a copper-containing polyphenol oxidase involved in the formation of melanin. Flavonoids are most often considered as tyrosinase inhibitors but have also been confirmed to be tyrosinase substrates. Four structure-related flavonoids including flavones (apigenin and luteolin) and flavonols (kaempferol and quercetin) are found to promote not inhibit browning induced by tyrosinase catalyzed oxidation both in model systems and in mushrooms under aerobic conditions.
View Article and Find Full Text PDFThe present work is intended to investigate the morphological instability of lipid membrane induced by peroxyl radical (ROO) and the underlying mechanism. To this end, the giant unilamellar vesicle (GUV) made from phosphatidylcholine was employed as a membrane model, and the azo compounds 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were used as the precursors of ROO. Upon mild pyrolysis, the GUV immobilized in agarose gel was followed by conventional optical microscopy in real time, and the morphological variation was quantified by the image heterogeneity, perimeter and area all as a function of time for up to an hour.
View Article and Find Full Text PDFThe kinetics of binding of calcium ions in molar excess to individual caseins and casein ingredients was studied in pH 6.4 aqueous solutions using stopped-flow absorption spectroscopy. An initial second-order reaction, faster for β-casein than for α-casein due to lower energy of activation (ΔE = 8.
View Article and Find Full Text PDFUptake of calcium from food depends on solubility of calcium salts in the intestines, and precipitation of calcium phosphates decreases bioaccessibility of food calcium. Citrate as a high affinity complex binder for calcium was found spontaneously to create strongly supersaturated solutions by rapid dissolution of calcium hydrogen phosphate characterized by short lag phases for precipitation. Gluconate with weaker affinity for calcium binding showed longer lag phases for precipitation from supersaturated solutions.
View Article and Find Full Text PDFCalcium binding to peptides formed by hydrolysis of whey proteins during digestion is important for calcium uptake in the intestines and affects the antioxidant function of the peptides. For the two dipeptides, Gly-Tyr and Tyr-Gly, potential hydrolysis products of α-lactalbumin, calcium binding to the three forms of each dipeptide in acid-base equilibrium at intestinal pH was determined electrochemically and compared to binding to tyrosine for aqueous 0.16 M NaCl for 5 < pH < 9 at 15 °C, 25 °C, and 37 °C.
View Article and Find Full Text PDFStrontium chloride added to aqueous suspensions of metastable calcium citrate tetrahydrate increased calcium ion activity measured electrochemically without transition of metastable tetrahydrate to stable calcium citrate hexahydrate as shown by DSC. Calcium activity increase was explained by lower solubility of strontium citrate pentahydrate formed (8.9 × 10 M at 25 °C) increasing with temperature compared to calcium citrate tetrahydrate (1.
View Article and Find Full Text PDFSinglet oxygen (O) formed through photosensitization may initiate oxidative destruction of biomembranes, however, the influence from the spatial organization of photosensitizers (PS) relative to membranes remains unclear. To clarify this issue, we loaded riboflavin 5'-(dihydrogen phosphate) monosodium (FMN-Na) as a hydrophilic PS into the lumen of halloysite nanotubes (HNTs), and attached the nanoassemblies (FMN-Na@HNTs), via Pickering effects, to the outer surfaces of giant unilamellar vesicles (GUVs) of phospholipids. We also prepared GUVs dopped with lumiflavin (LF) as a lipophilic PS having a O quantum yield comparable to FMN-Na.
View Article and Find Full Text PDFCalcium citrate tetrahydrate (CCT) and hexahydrate (CCH) precipitates from aqueous solutions of CaCl and sodium citrate above and below the transition temperature of 52 °C, respectively. The CCT, the dihydrate (CCD) and anhydrate (CCA) as obtained by a stepwise dehydration of solid CCH have enthalpy of dehydration of ΔH = 43.6, ΔH = 43.
View Article and Find Full Text PDFScope: Milk powder is commonly consumed throughout the world. However, advanced glycation end products (AGEs) will form in milk powder during thermal processing and long-term storage. This study aimed to identify such compounds with potential as new urinary biomarkers of intake of heat-treated skimmed milk powder (HSMP).
View Article and Find Full Text PDFYogurt-based snacks originally with a calcium content between 0.10 and 0.17 mmol/g dry matter were enriched with a whey mineral concentrate and whey protein isolate or hydrolysate.
View Article and Find Full Text PDFSaturated solutions of calcium l-lactate in water or in deuterium oxide continuously dissolve calcium l-lactate by addition of solid sodium d-gluconate and become strongly supersaturated in calcium d-gluconate due to no or slow precipitation. The quantification of total dissolved calcium allied with the calcium complexes equilibrium constants allowed an ion speciation, which shows an initial non-thermal and spontaneous supersaturation of more than a factor of 50 at 25 °C only slowly decreasing after initiation of precipitation of calcium d-gluconate after a lag phase of several hours. A mathematical model is proposed, based on numerical solution of coupled differential equations of dynamics of l-lactate and d-gluconate exchange during the lag phase for precipitation and during precipitation.
View Article and Find Full Text PDFInsoluble mineral residues from whey processing dominated by hydroxyapatite and calcium hydrogen phosphate were found to dissolve isothermally in aqueous sodium hydrogen citrate. Dissolution occurred spontaneously and the resultant homogeneous solutions were found to be supersaturated solutions in both calcium citrate and calcium hydrogen phosphate. Supersaturation was investigated by visual inspection combined with turbidity measurements and analyses of calcium and phosphorous by ICP.
View Article and Find Full Text PDFDifferent studies have shown that detection of free radicals by ESR spin trapping provides useful information on the susceptibility to oxidation of bulk oils and accordingly on the oxidative stability of different samples for comparative purposes. With the same goal, ESR spin trapping was evaluated in this work for in situ detection of radicals in dried microencapsulated oils (DMOs). By testing different oils, encapsulation matrices and oxidation conditions, results showed that ESR spin trapping can be useful to evaluate the oxidative susceptibility of DMOs, but ESR data should be interpreted cautiously, as the great complexity of the reactions involved may lead to data misinterpretations.
View Article and Find Full Text PDFCalcium phosphates present in whey mineral residue is a potential source of calcium for dietary purposes. Combinations of aqueous isocitrate and citrate were found more efficient than each of the isomers in dissolving dried insoluble whey processing mineral residues spontaneously forming supersaturated solutions. Hydrogen isocitrate was found around 30% less efficient in these non thermal dissolution processes compared to hydrogen citrate based on amount of dissolved calcium.
View Article and Find Full Text PDFFlavonoids are used as natural additives and antioxidants in foods, and after coordination to metal ions, as drug candidates, depending on the flavonoid structure. The rate of radical scavenging of the ubiquitous plant flavonoid kaempferol (3,5,7,4'-tetrahydroxyflavone, Kaem) was found to be significantly enhanced by coordination of Mg(ii), Ca(ii), Sr(ii), and Ba(ii) ions, whereas the radical scavenging rate of apigenin (5,7,4'-trihydroxyflavone, Api) was almost unaffected by alkaline earth metal (AEM) ions, as studied for short-lived β-carotene radical cations (β-Car˙) formed by laser flash photolysis in chloroform/ethanol (7 : 3) and for the semi-stable 2,2-diphenyl-1-picrylhydrazyl radical, DPPH˙, in ethanol at 25 °C. A 1 : 1 Mg(ii)-Kaem complex was found to be in equilibrium with a 1 : 2 Mg(ii)-Kaem complex, while for Ca(ii), Sr(ii) and Ba(ii), only 1 : 2 AEM(ii)-Kaem complexes were detected, where all complexes showed 3-hydroxyl and 4-carbonyl coordination and stability constants of higher than 10 L mol.
View Article and Find Full Text PDFRetinal (C20) and the C25 and C30 homologues were compared as radical scavengers together with their C22, C27, and C32 homologues linked with daidzein through a B'3 (isoflavonoid) to oxo-carbon (aldehyde) covalent bond. Oxidation potential in acetonitrile determined by cyclic voltammetry and ionization potential calculated by density functional theory for the aldehydes and dyads (conjugates), of which the two longer are new, decreased linearly with the wavenumber for absorption maximum. The logarithm of the second-order rate constant for scavenging of the ABTS increased linearly with decreasing oxidation potential suggesting that longer conjugation in the antioxidant increases the rate of electron transfer.
View Article and Find Full Text PDFPhotolytic cleavage of disulfide bonds in proteins by UV light will influence their structure and functionality. The present study aimed to investigate the efficiency of disulfide cleavage by UV-B light in a system without a protein backbone consisting of combinations of cystine (a disulfide) and tryptophan (Trp) or tyrosine (Tyr) under anaerobic and aerobic conditions and to identify oxidation products formed by UV-B light. Cystine was reduced to cysteine (Cys) almost with a 1:1 stoichiometry by photoexcited Trp for anaerobic equimolar aqueous solutions (each 200 μM; pH 7.
View Article and Find Full Text PDFWhey proteins are widely used as ingredients in the form of aggregates to obtain certain functionalities in food applications. The aim of this study was to understand how UV illumination generates aggregates of α-lactalbumin (α-LA) as an alternative to heat treatments traditionally used for industrial production of protein aggregates. Absorption of UV light by α-LA caused cleavage of disulfide bonds and release of thiol groups, which resulted in primarily disulfide-mediated aggregation.
View Article and Find Full Text PDFSn(II) binds to kaempferol (HKaem, 3,4',5,7-tetrahydroxy-2-(4-hydroxyphenyl)-4-1-benzopyran-4-one) at the 3,4-site forming [Sn(II)(Kaem)] complex in ethanol. DPPH scavenging efficiency of HKaem is dramatically decreased by SnCl coordination due to formation of acid inhibiting deprotonation of HKaem as ligands and thus reduces the radical scavenging activity of the complex via a sequential proton-loss electron transfer (SPLET) mechanism. Moderate decreases in the radical scavenging of HKaem are observed by Sn(CHCOO) coordination and by contact between Sn and HKaem, in agreement with the increase in the oxidation potential of the complex compared to HKaem, leading to a decrease in antioxidant efficiency for fruits and vegetables with Sn as package materials.
View Article and Find Full Text PDFThe beneficial effect of polyphenols and magnesium(II) against oxidative stress motivated our research group to explore the antioxidant activity of phenMgIso, an aqueous soluble magnesium(II) complex containing 1,10-phenanthroline (phen) and isovanillic acid (Iso) as ligands. Combined electrospray ionization-mass spectrometry and DOSY-NMR techniques identified two complexes in methanolic solution: hexacoordinated [Mg(phen)(Iso)] and tetracoordinated [Mg(phen)(Iso)]. The cyclic voltammogram of phenMgIso in the anodic region showed a cyclic process that interrupts the isovanillic acid degradation, probably by stabilization of the corresponding phenoxyl radical via complexation with Mg(II), which is interesting for antioxidant applications.
View Article and Find Full Text PDFA pork model system containg phenolic extracts (citrus, rosemary, and acerola), traditional Spanish food ingredients (paprika, garlic, and oregano), or natural nitrate sources (beet, lettuce, arugula, spinach, chard, celery, and watercress) were oxidized by an hydrophilic (OX, 2,2'-azobis(2-amidinopropane)-dihydrochloride; AAPH) or lipophilic (OX, 2,2'-azobis(2,4-dimethylvaleronitrile; AMVN) radical initiator. Citrus as well as lettuce and spinach protected almost fully against protein thiol loss and showed efficient radical scavenging activity as determined by ESR spectroscopy in both oxidizing systems. Rosemary was an efficient radical scavenger in both systems, but behaved as a prooxidant on thiols in the OX system.
View Article and Find Full Text PDF