Bats in the family Phyllostomidae exhibit great diversity in skull size and morphology that reflects the degree of resource division and ecological overlap in the group. In particular, the subfamily Stenodermatinae has high morphological diversification associated with cranial and mandibular traits that are associated with the ability to consume the full range of available fruits (soft and hard).We analyzed craniodental traits and their relationship to the bite force in 343 specimens distributed in seven species of stenodermatine bats with two foraging strategies: nomadic and sedentary frugivory.
View Article and Find Full Text PDFIn Neotropical bats, studies on bite force have focused mainly on differences in trophic ecology, and little is known about whether factors other than body size generate interspecific differences in bite force amongst insectivorous bats and, consequently, in their diets. We tested if bite force is related to skull morphology and also to diet in an assemblage of Neotropical insectivorous bats from tropical dry forests in the inter-Andean central valley in Colombia. It is predicted that the preference of prey types among insectivorous species is based on bite force and cranial characteristics.
View Article and Find Full Text PDFBats play crucial ecosystem services as seed dispersers, pollinators, controllers of insects, and nutrient recyclers. However, there has not been a thorough global review evaluating these roles in bats across all biogeographical regions of the world. We reviewed the literature published during the last two decades and identified 283 relevant studies: 78 dealt with the control of potential insect pests by bats, 80 related to the suppression of other arthropods, 60 on the dispersal of native or endemic seeds, 11 dealt with the dispersal of seeds of introduced plants, 29 on the pollination of native or endemic plants, 1 study on pollination of introduced plants, and 24 on the use of guano as fertilizer.
View Article and Find Full Text PDF