Background: Respiratory Syncytial Virus (RSV) presents a significant health threat, especially to young children. In-depth understanding of RSV entry mechanisms is essential for effective antiviral development. This study introduces an innovative RSV variant, featuring the fusion of the beta-lactamase (BlaM) enzyme with the RSV-P phosphoprotein, providing a versatile tool for dissecting viral entry dynamics.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a virus that causes acute respiratory infections in neonates and older adults. To infect host cells, the attachment glycoprotein (G) interacts with a cell surface receptor. This interaction determines the specific cell types that are susceptible to infection.
View Article and Find Full Text PDFHIV infection has a tremendous impact on the immune system's proper functioning. The mucosa-associated lymphoid tissue (MALT) is significantly disarrayed during HIV infection. Compositional changes in the gut microbiota might contribute to the mucosal barrier disruption, and consequently to microbial translocation.
View Article and Find Full Text PDF