Publications by authors named "Leicheng Zhao"

Currently, there is limited knowledge regarding occupational exposure of traditional and emerging organophosphate esters (OPEs) from e-waste and automobile dismantling activities, and their distribution within the human blood. In the present study, we collected dust and urine samples from e-waste (ED) (n = 91 and 130, respectively) and automobile dismantling (AD) plants (n = 93 and 94, respectively), as well as serum-plasma-whole blood samples (sets from 128 participants) within ED areas for analyzing traditional and emerging organophosphate tri-esters (tri-OPEs) and organophosphate di-esters (di-OPEs). Median concentration of ∑tri-OPEs and ∑di-OPEs in dust (37,400 and 9,000 ng/g in ED, and 27,000 and 14,700 ng/g in AD areas, respectively) and urine samples (11.

View Article and Find Full Text PDF

Aromatic amine antioxidants (AAs), extensively used in rubber products, and their ozone-photolyzed product -phenylenediamine quinones (PPD-Qs) were found to be pervasive in various environments and with potential ecological and health risks. The relationship between external and internal exposure to these contaminants and their exposure risks to the general population remain poorly explored. Herein, dust-handwipe-urine samples ( = 97 pairs) from families in Tianjin, China was collected for analyzing 20 AAs and 6 PPD-Qs (including self-synthesized emerging PPD-Qs).

View Article and Find Full Text PDF

Quaternary ammonium compounds (QACs), widely used in various disinfectants products during the COVID-19 Pandemic, raised the concerns on their exposure and health effect. To date, the sources of QACs in indoor environments have been largely ignored. Additionally, there is no information on the nationwide human exposure assessment of QACs in China after the COVID-19.

View Article and Find Full Text PDF

Melamine tableware can release melamine in daily-use; however, currently there is insufficient evidence to support whether the amount released could pose human exposure risk. We therefore conducted two studies, one is 8-day randomized crossover trial involving 27 volunteers who used melamine and stainless-steel tableware in turn (n = 648) and the other is cross-sectional study including 113 college students and 200 residents (n = 313) to further provide population-based evidence. The crossover study results showed that using melamine tableware could promote urinary concentrations of melamine, cyanuric acid (CYA), and ammelide by 42.

View Article and Find Full Text PDF
Article Synopsis
  • Automotive interiors release various chemicals, particularly plasticizers, raising concerns about health risks for end-of-life vehicle (ELV) dismantlers.
  • Dust samples from dismantling workshops showed much higher plasticizer concentrations compared to regular households and university dorms, indicating a significant occupational hazard.
  • Workers in ELV dismantling may face up to five times the daily intake of these harmful substances compared to the general population, highlighting the need for more research into their toxic effects.
View Article and Find Full Text PDF

Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of ƩPFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of ƩPFAS) and sludge (up to 4690 ng/g, 95 % of ƩPFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported.

View Article and Find Full Text PDF

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • A study analyzed 16 traditional and 13 novel organophosphate esters (OPEs) found in skin wipes, personal particulate matter (PM), sputum, and nails from 64 college students, alongside 7 OPE metabolites in urine.
  • Results showed similar OPE profiles in skin wipes and nails, and significant correlations among high-lipophilicity OPEs across these materials, suggesting that fingernails and toenails mostly reflect external exposure.
  • Additionally, the research highlighted that dermal absorption may be a more significant exposure pathway than inhalation, with skin wipes being the best indicator of overall human exposure to OPEs.
View Article and Find Full Text PDF

To comprehensively characterize residents' exposure to major semi-volatile organic compounds (SVOCs), samples of indoor floor wipes, size-segregated airborne particles, gaseous air, food, and paired skin wipes were simultaneously collected from residential areas around a large non-ferrous metal smelting plant as compared with the control areas, and three typical SVOCs (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and halogenated PAHs (HPAHs)) were determined. Comparison and correlation analysis among matrices indicated PAHs were the major contaminants emitted from metal smelting activities compared to HPAHs and PCBs, with naphthalene verified as the most important characteristic compound, and their accumulation on skin may be a comprehensive consequence of contact with floor dust and air. While patterns of human exposure pathways for the SVOCs were found to be clearly correlated to their vapor pressure, dermal absorption was the major contributor (51.

View Article and Find Full Text PDF

Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates how different types of masks—N95, KN95, medical surgical masks, and disposable medical masks—trap airborne organophosphate esters (OPEs) over time.
  • Laboratory tests revealed that N95 masks were more effective at trapping OPEs compared to the other masks, showing a decline in efficiency over a 24-hour period.
  • Field investigations confirmed that N95 masks also accumulated the highest levels of OPEs in various microenvironments, particularly in trains, highlighting their potential as both protective gear and indicators of indoor pollution.
View Article and Find Full Text PDF

To fill the knowledge gaps regarding the global patterns of human exposure to flame retardants (FRs) (i.e., brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs)), data on the levels and distributions of FRs in external and internal exposure mediums, including indoor dust, indoor air, skin wipe, serum and urine, were summarized and analysed.

View Article and Find Full Text PDF

Herein, a vesicle-like and porous polypyrrole (pPPy) was fabricated by in suit self-template method to efficiently capture per- and polyfluoroalkyl substances (PFASs) and the important role of porosity and morphology in PFAS removal was explored. Compared to solid PPy (sPPy), the porosity and vesicle-like morphology of pPPy endowed it with excellent properties such as large specific surface area (108.9 m/g vs.

View Article and Find Full Text PDF

The brick kilns in the South Asian region are widely documented to partially combust high-calorific waste components of synthetic-industrial origin, which contain hazardous constituents, including per- and polyfluoroalkyl substances (PFAS). Correspondingly, these establishments are necessarily built on agricultural land to easily acquire clay by excavating soil horizons, thus making cultivation soils vulnerable to PFAS contaminations. In this pioneering study, the occurrence, distribution profile, traceability and human health risk exposure to forty-four legacy and novel PFAS homologues, including two ultrashort-chain (C2-C3) PFAS, were investigated in agricultural soils around thirty-two conventional brick kilns across three districts of Pakistan.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify legacy and emerging PFAS from three fluoridated industrial parks in China, assessing their environmental occurrence and fate.
  • A total of 111 emerging PFAS were discovered, including 25 previously unidentified compounds, with significant variations in composition across different media influenced by chemical structures.
  • The research revealed distinct patterns of PFAS in the parks, with specific PFAS types dominating in each location, such as C4-PFAS in Fuxin and PFOA in Zibo, alongside varying concentrations in water and sediment.
View Article and Find Full Text PDF

E-waste dismantlers' occupational exposure to plasticizers, particularly non-phthalate (NPAE) plasticizers, is poorly understood. This study monitored 11 phthalates (PAEs) and 16 NPAEs in dust and hand wipe samples from Central China e-waste workplace and ordinary homes. Concentrations of plasticizers in dust from e-waste dismantling workshops (median: 217 μg/g) were significantly lower than that from ordinary homes (462 μg/g; p < 0.

View Article and Find Full Text PDF

Efficient removal of perfluoroalkyl acids (PFAAs), especially short-chain ones, from contaminated water is of great challenge and is urgently called for so as to safeguard the ecosystem and human health. Herein, polypyrrole (PPy) functionalized biochar (BC) composites were innovatively synthesized by an in situ self-sacrificial approach to allow efficient capture of PFAAs with different chain lengths. Compared with conventional PPy-based composites synthesized by direct polymerization using FeCl as an oxidizing agent, PPy/BC composites were fabricated utilizing freshly generated Fe as an oxidizing agent from self-sacrificial FeO for pyrrole monomers in situ polymerizing on BC.

View Article and Find Full Text PDF

Electrochemical oxidation (EO) has been shown to have the unique ability to degrade perfluorooctanoic acid (PFOA), although the radical chemistry involved in this degradation is unclear, particularly in the presence of chloride ions (Cl). In this study, reaction kinetics, free radical quenching, electron spin resonance, and radical probes were used to examine the roles of ·OH and reactive chlorine species (RCS, including Cl·, Cl, and ClO·) in the EO of PFOA. Using EO in the presence of NaCl, PFOA degradation rates of 89.

View Article and Find Full Text PDF

Extensive use of nitrogen-based flame retardants (NFRs) has resulted in their widespread environmental occurrence. To investigate human exposure to NFRs on a national scale, the abundance and spatial distribution of NFRs were assessed in urine specimens collected from 13 cities in China. Six out of eight target NFRs were detectable in more than half of the urine samples, and the total concentrations of NFRs ranged from 3.

View Article and Find Full Text PDF

Electronic waste (e-waste) dismantling facilities are a well-known source of emerging contaminants including organophosphate esters (OPEs). However, little information is available regarding the release characteristics and co-contaminations of tri- and di-esters. This study, therefore, investigated a broad range of tri- and di-OPEs in dust and hand wipe samples collected from an e-waste dismantling plant and homes as comparison.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts.

View Article and Find Full Text PDF

Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes.

View Article and Find Full Text PDF

Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear.

View Article and Find Full Text PDF

A large-scale survey was conducted by measuring five organophosphite antioxidants (OPAs) and three novel organophosphate esters (NOPEs) in 139 dust samples across China. The median summed concentrations of OPAs and NOPEs in outdoor dust were 33.8 ng/g (range: 0.

View Article and Find Full Text PDF