The SDF-1/CXCR4 signaling plays a critical role in the trafficking of mesenchymal stem cells (MSCs) to the sites of tissue damage. Our recent study demonstrated that atorvastatin (ATV) treatment improved the survival of MSCs, and ATV pretreated MSCs (MSCs) exhibited enhanced engraftment to injured myocardium. In this study, we investigated whether combined treatment with ATV and MSCs enhances cardiac repair and regeneration by activating SDF-1/CXCR4 signaling in a rat model of acute myocardial infarction.
View Article and Find Full Text PDFAtorvastatin (ATV) has an important pro-survival role in cardiomyocytes after acute myocardial infarction (AMI). The objectives of this study were to: 1) determine whether ATV could affect autophagy of cardiomyocytes via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and 2) investigate the balance between autophagy and apoptosis pathways. Male Wistar rats (n = 100) were randomly divided into sham, control, ATV, Compound C, and ATV+ Compound C groups.
View Article and Find Full Text PDFBackground/aims: Poor viability of transplanted mesenchymal stem cells (MSCs) within the ischemic heart limits their therapeutic potential for cardiac repair. Globular adiponectin (gAPN) exerts anti-apoptotic effects on several types of stem cells. Herein, we investigated the effect of gAPN on the MSCs against apoptosis induced by hypoxia and serum deprivation (H/SD).
View Article and Find Full Text PDF