Background: Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments.
Methods: We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay.
Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive brain tumor with poor patient prognosis. Treatment outcomes remain limited, partly due to intratumoral heterogeneity and the invasive nature of the tumors. Glioblastoma cells invade and spread into the surrounding brain tissue, and even between hemispheres, thus hampering complete surgical resection.
View Article and Find Full Text PDFCerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3), we show that endothelial cells from Ccm3 mice have an increased expression of inflammation-related genes.
View Article and Find Full Text PDFBackground: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels and has been suggested as a potential therapeutic target.
View Article and Find Full Text PDFCerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, , , and . Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of ( in a mouse model of CCM.
View Article and Find Full Text PDFRationale: The microvasculature of the central nervous system includes the blood-brain barrier (BBB), which regulates the permeability to nutrients and restricts the passage of toxic agents and inflammatory cells. Canonical Wnt/β-catenin signaling is responsible for the early phases of brain vascularization and BBB differentiation. However, this signal declines after birth, and other signaling pathways able to maintain barrier integrity at postnatal stage are still unknown.
View Article and Find Full Text PDFThe regulation of parental genome dosage is of fundamental importance in animals and plants, as exemplified by X-chromosome inactivation and dosage compensation. The 'triploid block' is a classic example of dosage regulation in plants that establishes a reproductive barrier between species differing in chromosome number. This barrier acts in the embryo-nourishing endosperm tissue and induces the abortion of hybrid seeds through a yet unknown mechanism .
View Article and Find Full Text PDFRationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions.
View Article and Find Full Text PDFThe JASON (JAS) protein plays an important role in maintaining an organelle band across the equator of male meiotic cells during the second division, with its loss leading to unreduced pollen in Arabidopsis. In roots cells, JAS localizes to the Golgi, tonoplast and plasma membrane. Here we explore the mechanism underlying the localization of JAS.
View Article and Find Full Text PDFBackground: Pollen tube growth is essential for plant reproduction and represents a widely employed model to investigate polarized cell expansion, a process important for plant morphogenesis and development. Cellular and regulatory mechanisms underlying pollen tube elongation are under intense investigation, which stands to greatly benefit from a comprehensive understanding of global gene expression profiles in pollen and pollen tubes. Here, RNA sequencing technology was applied to de novo assemble a Nicotiana tabacum male gametophytic transcriptome and to compare transcriptome profiles at two different stages of gametophyte development: mature pollen grains (MPG) and pollen tubes grown for six hours in vitro (PT6).
View Article and Find Full Text PDFSex chromosomes can evolve when recombination is halted between a pair of chromosomes, and this can lead to degeneration of the sex-limited chromosome. In the early stages of differentiation sex chromosomes are homomorphic, and even though homomorphic sex chromosomes are very common throughout animals and plants, we know little about the evolutionary forces shaping these types of sex chromosomes. We used DNA- and RNA-Seq data from females and males to explore the sex chromosomes in the female heterogametic willow, Salix viminalis, a species with ancient dioecy but with homomorphic sex chromosomes.
View Article and Find Full Text PDF