Publications by authors named "Lehtonen S"

The blood-brain barrier (BBB) serves as an interface between the bloodstream and the central nervous system. It limits the movement of molecules and immune cells, regulates the entry of nutrients, and removes waste products from the brain. The dysfunction of the BBB has been identified in Parkinson's disease (PD) but the role of the BBB and endothelial cells (ECs) has not been well studied.

View Article and Find Full Text PDF

Background: Pericytes play a crucial role in controlling inflammation and vascular functions in the central nervous system, which are disrupted in Parkinson's disease (PD). Still, there is a lack of studies on the impact of pericytes on neurodegenerative diseases, and their involvement in the pathology of PD is unclear. Our objective was to investigate the molecular and functional differences between healthy pericytes and pericytes with the LRRK2 G2019S mutation, which is one of the most common mutations associated with PD.

View Article and Find Full Text PDF

Edvard August Vainio was a world-renowned Finnish lichenologist. In Finland, however, he was a controversial person due to his strong pro-Finnish political views. Equally disputed was his opinion that systematics should be based on evolutionary theory and phylogenetic thinking.

View Article and Find Full Text PDF

Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia are immune cells in the brain that help maintain cellular health, but they might malfunction in Parkinson's disease (PD), particularly in relation to alpha-synuclein (αSyn) aggregation, which is a key feature of the disease.
  • Research using human induced pluripotent stem cells showed that when microglia are exposed to both alpha-synuclein fibrils and inflammatory signals, it disrupts their ability to effectively manage and clear these aggregates.
  • The study highlights that this model is useful for understanding microglial functioning in PD and reveals how inflammation affects their processing of alpha-synuclein, possibly worsening the disease state.
View Article and Find Full Text PDF

Background: Patients with Alzheimer's disease (AD) frequently present with cerebral amyloid angiopathy (CAA), characterized by the accumulation of beta-amyloid (Aβ) within the cerebral blood vessels, leading to cerebrovascular dysfunction. Pericytes, which wrap around vascular capillaries, are crucial for regulating cerebral blood flow, angiogenesis, and vessel stability. Despite the known impact of vascular dysfunction on the progression of neurodegenerative diseases, the specific role of pericytes in AD pathology remains to be elucidated.

View Article and Find Full Text PDF

The increasing incidence of oropharyngeal squamous cell carcinoma (OPSCC) is primarily due to human papillomavirus, and understanding the tumor biology caused by the virus is crucial. Our goal was to investigate the proteins present in the serum of patients with OPSCC, which were not previously studied in OPSCC tissue. We examined the difference in expression of these proteins between HPV-positive and -negative tumors and their correlation with clinicopathological parameters and patient survival.

View Article and Find Full Text PDF

Mutations in ubiquitously expressed presenilin genes (PSENs) lead to early-onset familial Alzheimer's disease (FAD), but patients carrying the mutation also suffer from heart diseases. To elucidate the cardiac myocyte specific effects of PSEN ΔE9, we studied cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) from patients carrying AD-causing PSEN1 exon 9 deletion (PSEN1 ΔE9). When compared with their isogenic controls, PSEN1 ΔE9 cardiomyocytes showed increased sarcoplasmic reticulum (SR) Ca leak that was resistant to blockage of ryanodine receptors (RyRs) by tetracaine or inositol-3-reseceptors (IPRs) by 2-ABP.

View Article and Find Full Text PDF

Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice.

View Article and Find Full Text PDF

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular.

View Article and Find Full Text PDF

Background: Development of synaptic activity is a key neuronal characteristic that relies largely on interactions between neurons and astrocytes. Although astrocytes have known roles in regulating synaptic function and malfunction, the use of human- or donor-specific astrocytes in disease models is still rare. Rodent astrocytes are routinely used to enhance neuronal activity in cell cultures, but less is known about how human astrocytes influence neuronal activity.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder.

View Article and Find Full Text PDF

Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied.

View Article and Find Full Text PDF

Introduction: Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the limitations in developing new therapies due to inadequate predictive in vitro models and presents Organ-on-chip (OOC) technologies as a promising solution for improved tissue and disease modeling.
  • It introduces a scalable microfluidic platform called AKITA, designed for high, medium, and low throughput applications compatible with existing laboratory workflows in a standardized format.
  • AKITA is specifically optimized for studying vascularized biological barriers like the blood-brain barrier, using precise flow control and integrated sensors to monitor barrier integrity, ultimately aiding in preclinical drug testing and precision medicine.
View Article and Find Full Text PDF

LRRK2-G2019S is one of the most common Parkinson's disease (PD)-associated mutations and has been shown to alter microglial functionality. However, the impact of LRRK2-G2019S on transcriptional profile of human induced pluripotent stem cell-derived microglia-like cells (iMGLs) and how it corresponds to microglia in idiopathic PD brain is not known. Here we demonstrate that LRRK2-G2019S carrying iMGL recapitulate aspects of the transcriptional signature of human idiopathic PD midbrain microglia.

View Article and Find Full Text PDF

Metabolic reprogramming is a hallmark of the immune cells in response to inflammatory stimuli. This metabolic process involves a switch from oxidative phosphorylation (OXPHOS) to glycolysis or alterations in other metabolic pathways. However, most of the experimental findings have been acquired in murine immune cells, and little is known about the metabolic reprogramming of human microglia.

View Article and Find Full Text PDF

Background: Certain variants of NHL repeat (named after , and )-containing protein 2 () gene have been linked to severe fibrotic interstitial lung disease in children. The aim of the current study was to evaluate the expression of NHLRC2 in lung cell and tissue samples from patients with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC).

Methods: The expression of NHLRC2 in lung tissue samples was studied by immunohistochemistry (102 ADC, 111 SCC), mRNA hybridization (4 ADC, 3 SCC), and Western blot analysis (3 ADC, 2 SCC).

View Article and Find Full Text PDF

Intercontinental disjunct distributions can arise either from vicariance, from long-distance dispersal, or through extinction of an ancestral population with a broader distribution. Tectariaceae s.l.

View Article and Find Full Text PDF

Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease.

View Article and Find Full Text PDF

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells.

View Article and Find Full Text PDF

Consumers and manufacturers are exposed to nanosized zinc oxide (nZnO) and silver particles (nAg) via airways, but their biological effects are still not fully elucidated. To understand the immune effects, we exposed mice to 2, 10, or 50 μg of nZnO or nAg by oropharyngeal aspiration and analyzed the global gene expression profiles and immunopathological changes in the lungs after 1, 7, or 28 days. Our results show that the kinetics of responses varied in the lungs.

View Article and Find Full Text PDF

Background: The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae.

Result: We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species.

View Article and Find Full Text PDF