Publications by authors named "Lehre K"

Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice.

View Article and Find Full Text PDF

The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions.

View Article and Find Full Text PDF

The biomedical research community relies directly or indirectly on immunocytochemical data. Unfortunately, validation of labeling specificity is difficult. A common specificity test is the preadsorption test.

View Article and Find Full Text PDF

The unravelling of the polarized distribution of AQP4 in perivascular astrocytic endfeet has revitalized the interest in the role of astrocytes in controlling water and ion exchange at the brain-blood interface. The importance of the endfeet is based on the premise that they constitute a complete coverage of the vessel wall. Despite a number of studies based on different microscopic techniques this question has yet to be resolved.

View Article and Find Full Text PDF

The neurotransmitter glutamate is inactivated by cellular uptake; mostly catalyzed by the glutamate transporter GLT1 (slc1a2, excitatory amino acid transporter [EAAT2]) subtype which is expressed at high levels in brain astrocytes and at lower levels in neurons. Three coulombs-terminal variants of GLT1 exist (GLT1a, GLT1b and GLT1c). Their cellular distributions are currently being debated (that of GLT1b in particular).

View Article and Find Full Text PDF

Human studies of intrasex variability have shown that males are intellectually more variable. Here we have performed retrospective statistical analysis of human intrasex variability in several different properties and performances that are unrelated or indirectly related to intelligence: (a) birth weights of nearly 48,000 babies (Medical Birth Registry of Norway); (b) adult weight, height, body mass index and blood parameters of more than 2,700 adults aged 18-90 (NORIP); (c) physical performance in the 60 meter dash event of 575 junior high school students; and (d) psychological performance reflected by the results of more than 222,000 undergraduate university examination grades (LIST). For all characteristics, the data were analyzed using cumulative distribution functions and the resultant intrasex variability for males was compared with that for females.

View Article and Find Full Text PDF

The relative distribution of the excitatory amino acid transporter 2 (EAAT2) between synaptic terminals and astroglia, and the importance of EAAT2 for the uptake into terminals is still unresolved. Here we have used antibodies to glutaraldehyde-fixed d-aspartate to identify electron microscopically the sites of d-aspartate accumulation in hippocampal slices. About 3/4 of all terminals in the stratum radiatum CA1 accumulated d-aspartate-immunoreactivity by an active dihydrokainate-sensitive mechanism which was absent in EAAT2 glutamate transporter knockout mice.

View Article and Find Full Text PDF

Antibodies have been in widespread use for more than three decades as invaluable tools for the specific detection of proteins or other molecules in biological samples. In spite of such a long experience, the field of immunocytochemistry is still troubled by spurious results due to insufficient specificity of antibodies or procedures used. The importance of keeping a high standard is increasing because massive sequencing of entire genomes leads to the identification of numerous new proteins.

View Article and Find Full Text PDF

We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1 microm LY341495 (2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid)], suggesting that elevated resting glutamate concentration specifically activates group II and group III mGluRs.

View Article and Find Full Text PDF

Cerebellar Purkinje cells (PCs) receive GABAergic input that undergoes powerful retrograde modulation by presynaptic cannabinoid and glutamate receptors. Here we examine a distinct modulatory mechanism at these synapses, which does not require postsynaptic depolarization and acts via presynaptic AMPA receptors. We find that this mechanism operates mainly in the somatic vicinity of PCs in which large boutons of basket cell axons form synapses on the PC soma.

View Article and Find Full Text PDF

Synaptically released glutamate activates extrasynaptic receptors; such actions are controlled by glutamate uptake. Recent experimental findings show that there are many more glutamate transporters on the postsynaptic than presynaptic side of the vicinity of central synapses. This asymmetry favours activation of axonal, as opposed to dendritic, extrasynaptic glutamate receptors, thus imposing rule on information processing in the brain.

View Article and Find Full Text PDF

Recent findings demonstrate that synaptically released excitatory neurotransmitter glutamate activates receptors outside the immediate synaptic cleft and that the extent of such extrasynaptic actions is regulated by the high affinity glutamate uptake. The bulk of glutamate transporter systems are evenly distributed in the synaptic neuropil, and it is generally assumed that glutamate escaping the cleft affects pre- and postsynaptic receptors to a similar degree. To test whether this is indeed the case, we use quantitative electron microscopy and establish the stochastic pattern of glial occurrence in the three-dimensional (3D) vicinity of two common types of excitatory central synapses, stratum radiatum synapses in hippocampus and parallel fiber synapses in cerebellum.

View Article and Find Full Text PDF

Alzheimer's disease is a common progressive neurodegenerative disease of unknown etiology. Several different pathological processes have been identified in the brains of Alzheimer patients. To determine if reduced glutamate uptake is a contributing factor, we have measured the levels of the glutamate transporter proteins GLAST (EAAT1) and GLT (EAAT2) in human autopsy samples.

View Article and Find Full Text PDF

The role of transporters in shaping the glutamate concentration in the extracellular space after synaptic release is controversial because of their slow cycling and because diffusion alone gives a rapid removal. The transporter densities have been measured electrophysiologically, but these data are from immature brains and do not give precise information on the concentrations of the individual transporter subtypes. Here we show by quantitative immunoblotting that the numbers of the astroglial glutamate transporters GLAST (EAAT1) and GLT (EAAT2) are 3200 and 12,000 per micrometer3 tissue in the stratum radiatum of adult rat hippocampus (CA1) and 18,000 and 2800 in the cerebellar molecular layer, respectively.

View Article and Find Full Text PDF

Antibodies to an excitatory amino acid transporter (EAAT4) label a glycoprotein of approximately 65 kDa strongly in the cerebellum and weakly in the forebrain. Cross-linking of cerebellar proteins with bis(sulfosuccinimidyl) suberate before solubilization causes dimer bands of EAAT4 and both dimer and trimer bands of the other glutamate transporters GLAST (EAAT1) and GLT (EAAT2) to appear on immunoblots. In contrast to GLAST, GLT, and EAAC (EAAT3), EAAT4 is unevenly distributed in the cerebellar molecular layer, being strongly expressed in parasagittal zones.

View Article and Find Full Text PDF

Glutamate transporters play an important role in the reuptake of glutamate after its release from glutamatergic synapses. Four such transporters have so far been cloned from the rat brain. One, the glutamate-aspartate transporter GLAST, has been detected in the mammalian cochlea, in which the principal afferent synapse of the auditory nerve, between the inner hair cells and neurites of type I spiral ganglion neurons, has been suggested to be glutamatergic.

View Article and Find Full Text PDF

The extracellular concentration of the excitatory neurotransmitter glutamate is kept low by the action of glutamate transporters in the plasma membranes of both neurons and glial cells. These transporters may play important roles, not only in the adult brain, but also in the developing brain, as glutamate is thought to modulate the formation and elimination of synapses as well as neuronal migration, proliferation and apoptosis. Here we demonstrate the developmental changes in the expression of two glutamate transporters, GLAST and GLT, by quantitative immunoblotting and by light and electron microscopic immunocytochemistry.

View Article and Find Full Text PDF

Glutamate is a neurotransmitter in retina. Glutamate transporter proteins keep the resting extracellular glutamate concentration low. This is required for normal neurotransmission and prevents the extracellular concentration of glutamate from reaching toxic levels.

View Article and Find Full Text PDF

Removal of excitatory amino acids from the extracellular fluid is essential for synaptic transmission and for avoiding excitotoxicity. The removal is accomplished by glutamate transporters located in the plasma membranes of both neurons and astroglia. The uptake system consists of several different transporter proteins that are carefully regulated, indicating more refined functions than simple transmitter inactivation.

View Article and Find Full Text PDF

Membrane-localized transporter proteins, expressed in both neurons and glial cells, are responsible for removal of extracellular glutamate in the mammalian CNS. The amounts and activities of these transporters may be under regulatory control. We demonstrate here that cortical lesions, which decrease striatal glutamate uptake in synaptosome-containing homogenates by approximately 50%, also decrease the striatal concentrations of the astrocytic glutamate transporter proteins, GLT-1 and GLAST by approximately 20-30%.

View Article and Find Full Text PDF

The glutamate transporters GLT-1 and GLAST were studied by immunogold labeling on ultrathin sections of rat brain tissue embedded in acrylic resins at low temperature after freeze substitution. Both proteins were selective markers of astrocytic plasma membranes. GLT-1 was much higher in hippocampal astrocytes than in cerebellar astrocytes.

View Article and Find Full Text PDF

Glutamate is believed to be the major excitatory transmitter in the mammalian central nervous system. Keeping the extracellular concentration of glutamate low, the glutamate transporters are required for normal brain function. Arachidonic acid (AA) inhibits glutamate uptake in relatively intact preparations (cells, tissue slices, and synaptosomes (Rhoads, D.

View Article and Find Full Text PDF

Glutamate, the major excitatory neurotransmitter in brain, is almost exclusively intracellular due to the action of the glutamate transporters in the plasma membranes. To study the localization and properties of these proteins, we have raised antibodies specifically recognizing parts of the sequences of two cloned rat glutamate transporters, GLT-1 (Pines et al., 1992) and GLAST (Storck et al.

View Article and Find Full Text PDF