Publications by authors named "Lehar M"

Article Synopsis
  • * In patients with morbid obesity and HFpEF, there are notable changes in heart muscle cells, including disrupted calcium response, altered gene expression, and cellular structure issues.
  • * Advanced imaging techniques revealed severe damage to heart muscle, particularly in the most obese patients, including mitochondrial dysfunction and reduced fatty acid processing, independent of diabetes.
View Article and Find Full Text PDF

Efficient and minimally invasive drug delivery to the inner ear is a significant challenge. The round window membrane (RWM), being one of the few entry points to the inner ear, has become a vital focus of investigation. However, due to the complexities of isolating the RWM, our understanding of its pharmacokinetics remains limited.

View Article and Find Full Text PDF

Introduction: The round window membrane (RWM) presents a significant barrier to the local application of therapeutics to the inner ear. We demonstrate a benchtop preclinical RWM model and evaluate superparamagnetic iron oxide nanoparticles (SPIONs) as vehicles for magnetically assisted drug delivery.

Methods: Guinea pig RWM explants were inset into a 3D-printed dual chamber benchtop device.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide that plays a putative role in the pathophysiology of migraine headaches and may be a candidate for biomarker status. CGRP is released from neuronal fibers upon activation and induces sterile neurogenic inflammation and arterial vasodilation in the vasculature that receives trigeminal efferent innervation. The presence of CGRP in the peripheral vasculature has spurred investigations to detect and quantify this neuropeptide in human plasma using proteomic assays, such as the enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Traumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI).

View Article and Find Full Text PDF

Traumatic axonal injury (TAI) and the associated axonopathy are common consequences of traumatic brain injury (TBI) and contribute to significant neurological morbidity. It has been previously suggested that TAI activates a highly conserved program of axonal self-destruction known as Wallerian degeneration (WD). In the present study, we utilize our well-established impact acceleration model of TBI (IA-TBI) to characterize the pathology of injured myelinated axons in the white matter tracks traversing the ventral, lateral, and dorsal spinal columns in the mouse and assess the effect of Sterile Alpha and TIR Motif Containing 1 (Sarm1) gene knockout on acute and subacute axonal degeneration and myelin pathology.

View Article and Find Full Text PDF

The Johns Hopkins Otologic Research Laboratory was founded in 1924 as the first human temporal bone laboratory within the United States. To better understand the contributions of the Johns Hopkins Otologic Research Laboratory to our understanding of presbycusis, we consulted with a medical librarian and archivist to search the Alan Mason Chesney Medical Archives, PubMed, JSTOR, and Johns Hopkins Bulletin for published and unpublished works from the lab. Between 1924 and 1938, Samuel J.

View Article and Find Full Text PDF

Outer hair cells (OHCs) in the mouse cochlea are contacted by up to three type II afferent boutons. On average, only half of these are postsynaptic to presynaptic ribbons. Mice of both sexes were subjected to acoustic trauma that produced a threshold shift of 44.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy.

View Article and Find Full Text PDF

Interest in brain-derived neurotrophic factor (BDNF) was greatly enhanced when it was recognized that its expression is reduced in neurodegenerative disorders, especially in Alzheimer's disease (AD). BDNF signaling through the TrkB receptor has a central role in promoting synaptic transmission, synaptogenesis, and facilitating synaptic plasticity making the BDNF-TrkB signaling pathway an attractive candidate for targeted therapies. Here we investigated the early effect of the small molecule TrkB agonist, 7,8 dihydroxyflavone (7,8-DHF), on AD-related pathology, dendritic arborization, synaptic density, and neurochemical changes in the 5xFAD mouse model of AD.

View Article and Find Full Text PDF

Gulf War Illness (GWI) is a chronic disease that affects the 1991 Gulf War (GW) veterans for which treatment is lacking. It has been hypothesized that drugs used to protect military personnel from chemical attacks and insects during the war: pyridostigmine bromide (PB),N, N-diethyl-m-toluamide (DEET), and permethrin (PER) together with stress may have contributed collectively and synergistically to generate GWI. There is a need to find markers of pathology to be used in pre-clinical trials.

View Article and Find Full Text PDF

DDX3 is a DEAD box RNA helicase with oncogenic properties. RK-33 is developed as a small-molecule inhibitor of DDX3 and showed potent radiosensitizing activity in preclinical tumor models. This study aimed to assess DDX3 as a target in breast cancer and to elucidate how RK-33 exerts its anti-neoplastic effects.

View Article and Find Full Text PDF

Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss.

View Article and Find Full Text PDF

Hypothesis: Whether the round window membrane (RWM) is permeable to iodine-based contrast agents (IBCA) is unknown; therefore, our goal was to determine if IBCAs could diffuse through the RWM using CT volume acquisition imaging.

Introduction: Imaging of hydrops in the living human ear has attracted recent interest. Intratympanic (IT) injection has shown gadolinium's ability to diffuse through the RWM, enhancing the perilymphatic space.

View Article and Find Full Text PDF

Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation.

View Article and Find Full Text PDF

Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores.

View Article and Find Full Text PDF

Repetitive mild traumatic brain injury (mTBI) is implicated in chronic neurological illness. The development of animal models of repetitive mTBI in mice is essential for exploring mechanisms of these chronic diseases, including genetic vulnerability by using transgenic backgrounds. In this study, the rat model of impact acceleration (IA) was redesigned for the mouse cranium and used in two clinically relevant repetitive mTBI paradigms.

View Article and Find Full Text PDF

C (cisternal) synapses with a near membrane postsynaptic cistern are found on motor neurons and other central neurons, where their functional role is unknown. Similarly structured cisternal synapses mediate cholinergic inhibition of cochlear hair cells via α9α10-containing ionotropic receptors and associated calcium-activated (SK2) potassium channels, providing the opportunity to examine the ultrastructure of genetically altered cisternal synapses. Serial section electron microscopy was used to examine efferent synapses of outer hair cells (OHCs) in mice with diminished or enhanced cholinergic inhibition.

View Article and Find Full Text PDF

Type II cochlear afferents receive glutamatergic synaptic excitation from outer hair cells (OHCs) in the rat cochlea. However, it remains uncertain whether this connection is capable of providing auditory information to the brain. The functional efficacy of this connection depends in part on the number of presynaptic OHCs, their probability of transmitter release, and the effective electrical distance for spatial summation in the type II fiber.

View Article and Find Full Text PDF

Several rare inherited disorders have provided valuable experiments of nature highlighting specific biological processes of particular importance to the survival or function of midbrain dopamine neurons. In both humans and mice, deficiency of hypoxanthine-guanine phosphoribosyl transferase (HPRT) is associated with profound loss of striatal dopamine, with relative preservation of other neurotransmitters. In the current studies of knockout mice, no morphological signs of abnormal development or degeneration were found in an exhaustive battery that included stereological and morphometric measures of midbrain dopamine neurons, electron microscopic studies of striatal axons and terminals, and stains for degeneration or gliosis.

View Article and Find Full Text PDF

Objective: To investigate the effects of platelet rich plasma (PRP) and fibrin sealant (FS) on facial nerve regeneration.

Study Design: Prospective, randomized, and controlled animal study.

Methods: Experiments involved the transection and repair of facial nerve of 49 male adult rats.

View Article and Find Full Text PDF

The myosin heavy chain (MHC) composition of a given muscle determines the contractile properties and, therefore, the fiber type distribution of the muscle. MHC isoform expression in the laryngeal muscle is modulated by neural input and function, and it represents the cellular level changes that occur with denervation and reinnervation of skeletal muscle. The objective of this study was to evaluate the pattern of MHC isoform expression in laryngeal muscle harvested from normal cadavers and cadavers with naturally occurring left laryngeal hemiplegia secondary to recurrent laryngeal neuropathy.

View Article and Find Full Text PDF

Hearing deficits have often been associated with loss of or damage to receptor hair cells and/or degeneration of spiral ganglion cells. There are, however, some physiological abnormalities that are not reliably attributed to loss of these cells. The afferent synapse between radial fibers of spiral ganglion neurons and inner hair cells (IHCs) emerges as another site that could be involved in transmission abnormalities.

View Article and Find Full Text PDF

Objective: The impact of polarity change on the efficiency of in vivo electroporative (EP) gene transfection was assessed in rat laryngeal muscle.

Study Design And Setting: High (HV) and low field voltage (LV) were combined with polarity changes to determine transfection in 5 different conditions: 1) without EP (EP[-]), 2) HV+LV (HL), 3) HV+LV followed by HV+LV with no change in polarity (HLHL unidirectional), 4) HV+LV followed by HV+LV with opposite polarity (HLHL bidirectional), 5) HV+LV followed by LV with opposite polarity (HLL bidirectional).

Results: HLL bidirectional sequence showed the best result with less interindividual variability and extended expression period.

View Article and Find Full Text PDF