Nanosized battery-type materials applied in electrochemical capacitors can effectively reduce a series of problems caused by low conductivity and large volume changes. However, this approach will lead to the charging and discharging process being dominated by capacitive behavior, resulting in a serious decline in the specific capacity of the material. By controlling the material particles to an appropriate size and a suitable number of nanosheet layers, the battery-type behavior can be retained to maintain a large capacity.
View Article and Find Full Text PDFNickel cobalt manganese ternary cathode materials are some of the most promising cathode materials in lithium-ion batteries, due to their high specific capacity, low cost, etc. However, they do have a few disadvantages, such as an unstable cycle performance and a poor rate performance. In this work, polyethylene oxide (PEO) with high ionic conductance and flexibility was utilized as a multifunctional binder to improve the electrochemical performance of LiNiCoMnO cathode materials.
View Article and Find Full Text PDFThe rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed.
View Article and Find Full Text PDFSilicon has been considered as one of the most promising anode material alternates for next-generation lithium-ion batteries, because of its high theoretical capacity, environmental friendliness, high safety, low cost, etc. Nevertheless, silicon-based anode materials (especially bulk silicon) suffer from severe capacity fading resulting from their low intrinsic electrical conductivity and great volume variation during lithiation/delithiation processes. To address this challenge, a few special constructions from nanostructures to anchored, flexible, sandwich, core-shell, porous and even integrated structures, have been well designed and fabricated to effectively improve the cycling performance of silicon-based anodes.
View Article and Find Full Text PDFFaraday Discuss
October 2015
Current collectors are essential features of batteries and many other electronic devices being responsible for efficient charge transport to active electrode materials. Three-dimensional (3D), high surface area current collectors considerably improve the performance of cathodes and anodes in batteries, but their technological implementation is impeded by the complexity of their preparation, which needs to be simple, fast, and energy efficient. Here we demonstrate that field-stimulated assembly of ∼3 nm copper nanoparticles (NPs) enables the preparation of porous Cu NP films.
View Article and Find Full Text PDF