Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia.
View Article and Find Full Text PDFMicrophysiological systems (MPS), also referred to as tissue chips, incorporating 3D skeletal myobundles are a novel approach for physiological and pharmacological studies to uncover new medical treatments for sarcopenia. We characterize a MPS in which engineered skeletal muscle myobundles derived from donor-specific satellite cells that model aged phenotypes are encapsulated in a perfused tissue chip platform containing platinum electrodes. Our myobundles were derived from CD56 myogenic cells obtained via percutaneous biopsy of the vastus lateralis from adults phenotyped by age and physical activity.
View Article and Find Full Text PDF