Genetic trends are a valuable tool for analysing the efficiency of breeding programs. They are calculated by averaging the predicted breeding values for all individuals born within a specific time period. Moreover, partitioned genetic trends allow dissecting the contributions of several selection paths to overall genetic progress.
View Article and Find Full Text PDFThe US dairy cattle genetic evaluation is currently a multistep process, including multibreed traditional BLUP estimations followed by single-breed SNP effects estimation. Single-step GBLUP (ssGBLUP) combines pedigree and genomic data for all breeds in one analysis. Unknown parent groups (UPG) or metafounders (MF) can be used to address missing pedigree information.
View Article and Find Full Text PDFUnknown Parent Groups model missing parentships according to breed, year, and pathway of selection. Genetic evaluations need a sensible definition of rules to form Unknown Parent Groups to ensure its accurate estimation. With more complex evaluations, there is a need for systematic rules to form Unknown Parent Groups.
View Article and Find Full Text PDFBackground: Cross-validation techniques in genetic evaluations encounter limitations due to the unobservable nature of breeding values and the challenge of validating estimated breeding values (EBVs) against pre-corrected phenotypes, challenges which the Linear Regression (LR) method addresses as an alternative. Furthermore, beef cattle genetic evaluation programs confront challenges with connectedness among herds and pedigree errors. The objective of this work was to evaluate the LR method's performance under pedigree errors and weak connectedness typical in beef cattle genetic evaluations, through simulation.
View Article and Find Full Text PDFBackground: The Dohne Merino sheep was introduced to Australia from South Africa in the 1990s. It was primarily used in crosses with the Merino breed sheep to improve on attributes such as reproduction and carcass composition. Since then, this breed has continued to expand in Australia but the number of genotyped and phenotyped purebred individuals remains low, calling into question the accuracy of genomic selection.
View Article and Find Full Text PDFMetafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics-namely, heterozygosities, F coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy-Weinberg equilibrium.
View Article and Find Full Text PDFBackground: The theory of "metafounders" proposes a unified framework for relationships across base populations within breeds (e.g. unknown parent groups), and base populations across breeds (crosses) together with a sensible compatibility with genomic relationships.
View Article and Find Full Text PDFBackground: Validation by data truncation is a common practice in genetic evaluations because of the interest in predicting the genetic merit of a set of young selection candidates. Two of the most used validation methods in genetic evaluations use a single data partition: predictivity or predictive ability (correlation between pre-adjusted phenotypes and estimated breeding values (EBV) divided by the square root of the heritability) and the linear regression (LR) method (comparison of "early" and "late" EBV). Both methods compare predictions with the whole dataset and a partial dataset that is obtained by removing the information related to a set of validation individuals.
View Article and Find Full Text PDFGenetic improvement in small countries rely heavily on foreign genetics. In an importing country such as Uruguay, consideration of unknown parent groups (UPG) for foreign sires is essential. However, the use of UPG in genomic model evaluations may lead to bias in genomic estimated breeding values (GEBV).
View Article and Find Full Text PDFHistorical data collection for genetic evaluation purposes is a common practice in animal populations; however, the larger the dataset, the higher the computing power needed to perform the analyses. Also, fitting the same model to historical and recent data may be inappropriate. Data truncation can reduce the number of equations to solve, consequently decreasing computing costs; however, the large volume of genotypes is responsible for most of the increase in computations.
View Article and Find Full Text PDFRecently, high-dimensional omics data are becoming available in larger quantities, and models have been developed that integrate them with genomics to understand in finer detail the relationship between genotype and phenotype, and thus improve the performance of genetic evaluations. Our objectives are to quantify the effect of the inclusion of microbiome data in the genetic evaluation for dairy traits in sheep, through the estimation of the heritability, microbiability, and how the microbiome effect on dairy traits decomposes into genetic and nongenetic parts. In this study we analyzed milk and rumen samples of 795 Lacaune dairy ewes.
View Article and Find Full Text PDFThe genetic trend of milk yield for 4 French dairy sheep breeds (Lacaune, Basco-Béarnaise, Manech Tête Noire, and Manech Tête Rousse) was partitioned in Mendelian sampling trends by categories of animals defined by sex and by selection pathways. Five categories were defined, as follows: (1) artificial insemination (AI) males (after progeny testing), (2) males discarded after progeny testing, (3) natural mating males, (4) dams of males, and (5) dams of females. Dams of males and AI males were the most important sources of genetic progress, as observed in the decomposition in Mendelian sampling trends.
View Article and Find Full Text PDFGenomic selection was deployed in Lacaune dairy breed in 2015. Lacaune population split in 1972 into 2 breeding companies with associated flocks, and there have been very few exchanges of animals between the subpopulations, leading to divergence of the 2 subpopulations. In spite of that, there is a joint genomic prediction.
View Article and Find Full Text PDFTransmission ratio distortion (TRD), which is a deviation from Mendelian expectations, has been associated with basic mechanisms of life such as sperm and ova fertility and viability at developmental stages of the reproductive cycle. In this study different models including TRD regions were tested for different reproductive traits [days from first service to conception (FSTC), number of services, first service nonreturn rate (NRR), and stillbirth (SB)]. Thus, in addition to a basic model with systematic and random effects, including genetic effects modeled through a genomic relationship matrix, we developed 2 additional models, including a second genomic relationship matrix based on TRD regions, and TRD regions as a random effect assuming heterogeneous variances.
View Article and Find Full Text PDFInterpopulation improvement for crosses of close populations in crops and livestock depends on the amount of heterosis and the amount of variance of dominance deviations in the hybrids. It has been intuited that the further the distance between populations, the lower the amount of dominance variation and the higher the heterosis. Although experience in speciation and interspecific crosses shows, however, that this is not the case when populations are so distant-here we confine ourselves to the case of not-too-distant populations typical in crops and livestock.
View Article and Find Full Text PDFMaintaining genetic variation in a population is important for long-term genetic gain. The existence of subpopulations within a breed helps maintain genetic variation and diversity. The 20,990 genotyped animals, representing the breeding animals in the year 2014, were identified as the sires of animals born after 2010 with at least 25 progenies, and females measured for type traits within the last 2 yr of data.
View Article and Find Full Text PDFGene expression is supposed to be an intermediate between DNA and the phenotype, and it can be measured. Thus, for a trait, we may have intermediate measures, which are in fact a series of genetically controlled traits. Similarly, several traits may be measured or predicted using infrared spectra, accelerometers, and similar high-throughput measures that we will call "omics.
View Article and Find Full Text PDFBackground: Reliabilities of best linear unbiased predictions (BLUP) of breeding values are defined as the squared correlation between true and estimated breeding values and are helpful in assessing risk and genetic gain. Reliabilities can be computed from the prediction error variances for models with a single base population but are undefined for models that include several base populations and when unknown parent groups are modeled as fixed effects. In such a case, the use of metafounders in principle enables reliabilities to be derived.
View Article and Find Full Text PDFSpanish Latxa and French Manech are dairy sheep breeds that split into Blond (Latxa Cara Rubia, LCR; Manech Tête Rousse, MTR) and Black (Latxa Cara Negra of Navarre, LCN; Manech Tête Noire, MTN) strains. Exchange of genetic material (artificial insemination doses) is becoming more and more frequent across these breeds, within color, to boost both genomic precision using a larger reference population and genetic progress using a larger selection base. This exchange leads to some rams having descendance across both countries.
View Article and Find Full Text PDFBackground: At the beginning of genomic selection, some Chinese companies genotyped pigs with different single nucleotide polymorphism (SNP) arrays. The obtained genomic data are then combined and to do this, several imputation strategies have been developed. Usually, only additive genetic effects are considered in genetic evaluations.
View Article and Find Full Text PDFBackground: Although single-step GBLUP (ssGBLUP) is an animal model, SNP effects can be backsolved from genomic estimated breeding values (GEBV). Predicted SNP effects allow to compute indirect prediction (IP) per individual as the sum of the SNP effects multiplied by its gene content, which is helpful when the number of genotyped animals is large, for genotyped animals not in the official evaluations, and when interim evaluations are needed. Typically, IP are obtained for new batches of genotyped individuals, all of them young and without phenotypes.
View Article and Find Full Text PDFSingle-step genomic BLUP (ssGBLUP) relies on the combination of the genomic ( ) and pedigree relationship matrices for all ( ) and genotyped ( ) animals. The procedure ensures and are compatible so that both matrices refer to the same genetic base ('tuning'). Then is combined with a proportion of ('blending') to avoid singularity problems and to account for the polygenic component not accounted for by markers.
View Article and Find Full Text PDFBackground: Single-step genomic predictions obtained from a breeding value model require calculating the inverse of the genomic relationship matrix [Formula: see text]. The Algorithm for Proven and Young (APY) creates a sparse representation of [Formula: see text] with a low computational cost. APY consists of selecting a group of core animals and expressing the breeding values of the remaining animals as a linear combination of those from the core animals plus an error term.
View Article and Find Full Text PDF