Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas.
View Article and Find Full Text PDFSeasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey.
View Article and Find Full Text PDFIn seasonal environments, the fitness of animals depends upon the successful integration of life-history stages throughout their annual cycle. Failing to do so can lead to negative carry-over effects where individuals are transitioning into the next season in different states, consequently affecting their future performance. However, carry-over effects can be masked by individual quality when individuals vary in their efficiency at acquiring resources year after year (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Atomically thin platinum diselenide (PtSe) films are promising for applications in the fields of electronics, spintronics, and photodetectors owing to their tunable electronic structure and high carrier mobility. Using terahertz (THz) spectroscopy techniques, we investigated the layer-dependent semiconducting-to-metallic phase transition and associated intrinsic carrier dynamics in large-scale PtSe films grown by molecular beam epitaxy. The uniformity of large-scale PtSe films was characterized by spatially and frequency-resolved THz-based sheet conductivity mapping.
View Article and Find Full Text PDFIndirect interactions are widespread among prey species that share a common predator, but the underlying mechanisms driving these interactions are often unclear, and our ability to predict their outcome is limited. Changes in behavioural traits that impact predator space use could be a key proximal mechanism mediating indirect interactions, but there is little empirical evidence of the causes and consequences of such behavioural-numerical response in multispecies systems. Here, we investigate the complex ecological relationships between seven prey species sharing a common predator.
View Article and Find Full Text PDFThe growth of transition-metal dichalcogenides (TMDCs) has been performed so far using most established thin-film growth techniques (e.g., vapor phase transport, chemical vapor deposition, molecular beam epitaxy, etc.
View Article and Find Full Text PDFGlobal climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success.
View Article and Find Full Text PDFBackground: Studying the anti-predatory behavior of mammals represents an important challenge, especially for fossorial small mammals that hide in burrows. In the Arctic, such behaviors are critical to the survival of lemmings considering that predation risks are high every summer. Because detailed information about how lemmings use burrows as hideouts is still lacking, we developed a 1.
View Article and Find Full Text PDFReproduction is one of the most energetically costly life history stages, which impose constraints, even outside the breeding period. Capital breeders typically accumulate energy in preparation for reproduction and the amount of body mass gain prior to reproduction partly determines reproductive outcome in such species. Understanding the physiological and behavioral interplay that governs energy storage is thus essential.
View Article and Find Full Text PDFThe global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence.
View Article and Find Full Text PDFGraphene is ideally suited for optoelectronics. It offers absorption at telecom wavelengths, high-frequency operation and CMOS-compatibility. We show how high speed optoelectronic mixing can be achieved with high frequency (~20 GHz bandwidth) graphene field effect transistors (GFETs).
View Article and Find Full Text PDFOverabundant species can have major impacts on their habitat and induce trophic cascades within ecosystems. In North America, the overabundant greater snow goose () has been successfully controlled through special spring hunting regulations since 1999. Hunting is a source of mortality but also of disturbance, which affects the behavior and nutrient storage dynamics of staging snow geese.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2020
Models incorporating seasonality are necessary to fully assess the impact of global warming on Arctic communities. Seasonal migrations are a key component of Arctic food webs that still elude current theories predicting a single community equilibrium. We develop a multi-season model of predator-prey dynamics using a hybrid dynamical systems framework applied to a simplified tundra food web (lemming-fox-goose-owl).
View Article and Find Full Text PDFWe report compact, scalable, high-performance, waveguide integrated graphene-based photodetectors (GPDs) for telecom and datacom applications, not affected by dark current. To exploit the photothermoelectric (PTE) effect, our devices rely on a graphene/polymer/graphene stack with static top split gates. The polymeric dielectric, poly(vinyl alcohol) (PVA), allows us to preserve graphene quality and to generate a controllable p-n junction.
View Article and Find Full Text PDFTo invest in energetically demanding life history stages, individuals require a substantial amount of resources. Physiological traits, particularly those related to energetics, can be useful for examining variation in life history decisions and trade-offs because they result from individual responses to environmental variation. Leptin is a protein hormone found in mammals that is proportional to the amount of endogenous fat stores within an individual.
View Article and Find Full Text PDFIndirect impacts of climate change, mediated by new species interactions (including pathogens or parasites) will likely be key drivers of biodiversity reorganization. In addition, direct effects of extreme weather events remain understudied. Simultaneous investigation of the significance of ectoparasites on host populations and extreme weather events is lacking, especially in the Arctic.
View Article and Find Full Text PDFDetermining how environmental conditions interact with individual intrinsic properties is important for unravelling the underlying mechanisms that drive variation in reproductive decisions among migratory species. We investigated the influence of sea ice conditions and body condition at arrival on the breeding propensity, i.e.
View Article and Find Full Text PDFFor migratory species, acquisition and allocation of energy after arrival on the breeding grounds largely determine reproductive decisions. Few studies have investigated underlying physiological mechanisms driving variation in breeding phenology so far. We linked physiological state to individual timing of breeding in pre-laying arctic-nesting female peregrine falcons (Falco peregrinus tundrius).
View Article and Find Full Text PDFThe influence of variation in individual state on key reproductive decisions impacting fitness is well appreciated in evolutionary ecology. Rowe et al. (1994) developed a condition-dependent individual optimization model predicting that three key factors impact the ability of migratory female birds to individually optimize breeding phenology to maximize fitness in seasonal environments: arrival condition, arrival date, and ability to gain in condition on the breeding grounds.
View Article and Find Full Text PDFUnderstanding the mechanisms responsible for stability and persistence of ecosystems is one of the greatest challenges in ecology. Robert May showed that, contrary to intuition, complex randomly built ecosystems are less likely to be stable than simpler ones. Few attempts have been tried to test May's prediction empirically, and we still ignore what is the actual complexity-stability relationship in natural ecosystems.
View Article and Find Full Text PDFFor birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to provide information on total baseline and stress-induced CORT levels at moulting and is an integrated measure of hypothalamic-pituitary-adrenal activity during the time feathers are grown.
View Article and Find Full Text PDF