Using the helium nanodroplet isolation setup at the ultrabright free-electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in-plane and out-of-plane librational modes. This experimental data set provides a sensitive test for state-of-the-art water potentials and dipole moment surfaces.
View Article and Find Full Text PDFWe report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm(-1) and assigned to (H2O)2 libration-rotation-tunneling eigenstates. The band origin for the Ka = 1 subband is ~524 cm(-1).
View Article and Find Full Text PDFA potential energy surface for the water dimer with explicit dependence on monomer coordinates is presented. The surface was fitted to a set of previously published interaction energies computed on a grid of over a quarter million points in the 12-dimensional configurational space using symmetry-adapted perturbation theory and coupled-cluster methods. The present fit removes small errors in published fits, and its accuracy is critically evaluated.
View Article and Find Full Text PDFWe present a full quantum evaluation of the water second virial coefficient B(T) based on the Takahashi-Imada second order approximation. As the associated trace T r[e(-βH(AB)) - e(-βH(0)(AB))] is performed in the coordinate representation, it does also include contribution from the whole continuum, i.e.
View Article and Find Full Text PDFThe development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles".
View Article and Find Full Text PDFWe report the definition and testing of a new ab initio 12-dimensional potential for the water dimer with flexible monomers. Using our recent accurate CCpol-8s rigid water pair potential [W. Cencek, K.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2012
We report calculations of the infrared shifts for the water dimer, as obtained from the recent ab initio fully flexible HBB2 potential of Bowman and co-workers. The rovibrational calculations, which formally are 12-dimensional plus overall rotation, were performed within the [6+6]d adiabatic separation which decouples the 'fast' intramolecular modes from the 'slow' intermolecular ones. Apart from this decoupling, each set of modes is treated in a fully variational approach.
View Article and Find Full Text PDFWe report the definition and refinement of a new first principles potential for the acetylene dimer. The ab initio calculations were performed with the DFT-SAPT combination of symmetry-adapted intermolecular perturbation method and density functional theory, and fitted to a model site-site functional form. Comparison of the calculated microwave spectrum with experimental data revealed that the barriers to isomerization were too low.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2011
CW-cavity ring down spectroscopy was used to record in a free jet expansion the spectrum of the absorption band in ((12)C(2)H(2))(2) with origin at 6547.6 cm(-1). It is a perpendicular band and corresponds to 2CH excitation in the hat unit of the T-shaped dimer.
View Article and Find Full Text PDFAn improved intermolecular potential surface for the benzene dimer is constructed from interaction energies computed by symmetry-adapted perturbation theory, SAPT(DFT), with the inclusion of third-order contributions. Twelve characteristic points on the surface have been investigated also using the coupled-cluster method with single, double, and perturbative triple excitations, CCSD(T), and triple-zeta quality basis sets with midbond functions. The SAPT and CCSD(T) results are in close agreement and provide the best representation of these points to date.
View Article and Find Full Text PDFWe investigated the magnitude and temperature dependence (T dependence) of the dimer absorption in the region of 0-600 cm(-1) and the collision-induced absorption (CIA) in the region of 0-1150 cm(-1). Together with our previous study of the self water-vapor continuum contributions resulting from far-wing line shapes of the allowed H(2)O lines in the infrared window between 800 and 1150 cm(-1), we find that the three mechanisms have completely different T dependence behaviors. The dimer absorption has the strongest negative T dependence and the continuum absorption from far wings of the allowed lines has a moderately strong negative one.
View Article and Find Full Text PDFThe 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem.
View Article and Find Full Text PDFThe ab initio water dimer interaction energies obtained from coupled cluster calculations and used in the CC-pol water pair potential (Bukowski et al., Science, 2007, 315, 1249) have been refitted to a site-site form containing eight symmetry-independent sites in each monomer and denoted as CC-pol-8s. Initially, the site-site functions were assumed in a B-spline form, which allowed a precise optimization of the positions of the sites.
View Article and Find Full Text PDFIt is well known that the water-vapor continuum plays an important role in the radiative balance in the Earth's atmosphere. This was first discovered by Elsasser almost 70 years ago, and since that time there has been a large body of work, both experimental and theoretical, on this topic. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H(2)O number density and has a strong, negative temperature dependence (T dependence).
View Article and Find Full Text PDFWe present a rigorous calculation of the contribution of water dimers to the absorption coefficient alpha(nu,T) in the millimeter and far infrared domains, over a wide range (276-310 K) of temperatures. This calculation relies on the explicit consideration of all possible transitions within the entire rovibrational bound state manifold of the dimer. The water dimer is described by the flexible 12-dimensional potential energy surface previously fitted to far IR transitions [C.
View Article and Find Full Text PDFWe present new results for the water dimer equilibrium constant K(p)(T) in the range 190-390 K, using a flexible potential energy surface fitted to spectroscopical data. The increased numerical complexity due to explicit consideration of the monomer vibrations is handled via an adiabatic (6 + 6)d decoupling between intra- and intermolecular modes. The convergence of the canonical partition function of the dimer is ensured by computing all energy levels up to dissociation for total angular momentum values J = 0-5 and using an extrapolation scheme to higher values.
View Article and Find Full Text PDFWe present a new approach based on the block-Davidson scheme which provides eigenvalues and eigenvectors of highly excited (ro) vibrational states of polyatomic molecules. The key ingredient is a prediagonalized-perturbative scheme applied to a subspace of a curvilinear normal-mode basis set. This approach is coupled to the Jacobi vector description recently developed by our group [C.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2005
We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface (the third fitting of the Anisotropic Site Potential with Woermer dispersion to vibration-rotation-tunnelling data). VRT(ASP-W)III is shown to not only be a model of high 'spectroscopic' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared with those from ab initio molecular dynamics, other potentials of 'spectroscopic' accuracy and with experiment.
View Article and Find Full Text PDFWe report the observation of extensive a- and c-type rotation-tunneling (RT) spectra of (D2O)2 for Ka = 0-4. These data allow quantification of molecular constants and tunneling splittings for a number of previously unobserved RT states of (D2O)2. The vibrational ground state has thus been characterized to energies as high as those of some of the intermolecular vibrations, and we present the first test of the VRT(ASP-W) potential at these high Ka states.
View Article and Find Full Text PDFA polarizable water pair potential was determined by fitting a potential form to microwave, terahertz, and mid-infrared (D2O)2 spectra through a rigorous calculation of the water dimer eigenstates. It accurately reproduces most ground state vibration-rotation-tunneling spectra and yields excellent second viral coefficients. The calculated dimer structure and dipole moment are very close to those determined from microwave spectroscopy and high-level ab initio calculations.
View Article and Find Full Text PDFThe effectiveness of transfusions of frozen red cells has presently been clearly demonstrated. The authors present their technique of preparation of these cells and their experience of this material in 51 cases of ECC. The results observed plead in favour of the notion that frozen-defrosted blood, combines the advantages of washed blood, freed from all plasma and cellular contaminants of fresh blood with preservation of the oxyphoric power.
View Article and Find Full Text PDF