Rhesus macaques (RMs) are vital models for studying human disease, and are invaluable to pre-clinical pipelines for vaccine discovery and testing. Particularly in this regard, they are often used to study infection and vaccine-associated broadly neutralizing antibody responses. This has resulted in an increasing demand for improved genetic resources for the immunoglobulin (IG) loci, which harbor antibody-encoding genes.
View Article and Find Full Text PDFThe Europa Imaging System (EIS) consists of a Narrow-Angle Camera (NAC) and a Wide-Angle Camera (WAC) that are designed to work together to address high-priority science objectives regarding Europa's geology, composition, and the nature of its ice shell. EIS accommodates variable geometry and illumination during rapid, low-altitude flybys with both framing and pushbroom imaging capability using rapid-readout, 8-megapixel (4k × 2k) detectors. Color observations are acquired using pushbroom imaging with up to six broadband filters.
View Article and Find Full Text PDFThe oxidative folding of the protein bovine pancreatic trypsin inhibitor (BPTI) with oxidized dithiothreitol or glutathione has served as a paradigm for protein folding but could take weeks at physiological pH because of the need to escape from kinetic traps a rearrangement type pathway. The two major kinetic traps are called N' and N* and contain two of the three native disulfide bonds, which occur between residues 5 and 55, 30 and 51, and 14 and 38. N' is missing the disulfide bond between residues 5 and 55 while N* is missing the disulfide bond between residues 30 and 51.
View Article and Find Full Text PDFImmunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions.
View Article and Find Full Text PDFEnhancing the reproducibility and comprehension of adaptive immune receptor repertoire sequencing (AIRR-seq) data analysis is critical for scientific progress. This study presents guidelines for reproducible AIRR-seq data analysis, and a collection of ready-to-use pipelines with comprehensive documentation. To this end, ten common pipelines were implemented using ViaFoundry, a user-friendly interface for pipeline management and automation.
View Article and Find Full Text PDFSummary: Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High-throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods.
View Article and Find Full Text PDFIntroduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated.
Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources.
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region.
View Article and Find Full Text PDFAnalysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing.
View Article and Find Full Text PDFE1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy.
View Article and Find Full Text PDFThe immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals.
View Article and Find Full Text PDFAdaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each.
View Article and Find Full Text PDFHigh-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR) has revolutionized the ability to carry out large-scale experiments to study the adaptive immune response.
View Article and Find Full Text PDFBackground: T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance.
View Article and Find Full Text PDFImmunogenomics studies have been largely limited to individuals of European ancestry, restricting the ability to identify variation in human adaptive immune responses across populations. Inclusion of a greater diversity of individuals in immunogenomics studies will substantially enhance our understanding of human immunology.
View Article and Find Full Text PDFCurr Opin Syst Biol
December 2020
Immunoglobulin genes are rarely considered as disease susceptibility genes despite their obvious and central contributions to immune function. This appears to be a consequence of historical views on antibody repertoire formation that no longer stand, and of difficulties that until recently surrounded the documentation of the suite of antibody genes in any individual. If these important genes are to be accessible to GWAS studies, allelic variation within the human population needs to be better documented, and a curated set of genomic variations associated with antibody genes needs to be formulated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Climate change is threatening an uncalculated number of archaeological sites globally, totaling perhaps hundreds of thousands of culturally and paleoenvironmentally significant resources. As with all archaeological sites, they provide evidence of humanity's past and help us understand our place in the present world. Coastal sites, clustered at the water's edge, are already experiencing some of the most dramatic damage due to anthropogenic climate change, and the situation is predicted to worsen in the future.
View Article and Find Full Text PDFThe glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features.
View Article and Find Full Text PDFSummary: Antibody repertoires reveal insights into the biology of the adaptive immune system and empower diagnostics and therapeutics. There are currently multiple tools available for the annotation of antibody sequences. All downstream analyses such as choosing lead drug candidates depend on the correct annotation of these sequences; however, a thorough comparison of the performance of these tools has not been investigated.
View Article and Find Full Text PDFThe adaptive immune system generates an incredible diversity of antigen receptors for B and T cells to keep dangerous pathogens at bay. The DNA sequences coding for these receptors arise by a complex recombination process followed by a series of productivity-based filters, as well as affinity maturation for B cells, giving considerable diversity to the circulating pool of receptor sequences. Although these datasets hold considerable promise for medical and public health applications, the complex structure of the resulting adaptive immune receptor repertoire sequencing (AIRR-seq) datasets makes analysis difficult.
View Article and Find Full Text PDFNucleic Acids Res
January 2020
High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations.
View Article and Find Full Text PDFIEEE Trans Cogn Commun Netw
January 2019
In the United States, the Federal Communications Commission has adopted rules permitting commercial wireless networks to share spectrum with federal incumbents in the 3.5 GHz Citizens Broadband Radio Service band. These rules require commercial systems to vacate the band when sensors detect radars operated by the U.
View Article and Find Full Text PDF