Publications by authors named "Leena-sisko Johansson"

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers.

View Article and Find Full Text PDF

With the increasing need for bio-based materials developed by environmentally friendly procedures, this work shows a green method to develop shape-controlled structures from cellulose dissolving pulp coated by chitosan. This material was then tested to adsorb a common and widespread pollutant, 2,4-dichlorophenol under different pH conditions (5.5 and 9).

View Article and Find Full Text PDF

Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm) and surface area (1152 m·g).

View Article and Find Full Text PDF

The growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm).

View Article and Find Full Text PDF

This paper demonstrates a high-throughput approach to fabricate nanocellulose films with multifunctional performance using conventionally existing unit operations. The approach comprises cast-coating and direct interfacial atmospheric plasma-assisted gas-phase modification along with the microscale patterning technique (nanoimprint lithography, NIL), all applied in roll-to-roll mode, to introduce organic functionalities in conjunction with structural manipulation. Our strategy results in multifunctional cellulose nanofibrils (CNF) films in which the high optical transmittance (∼90%) is retained while the haze can be adjusted (2-35%).

View Article and Find Full Text PDF

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices.

View Article and Find Full Text PDF

TEMPO-oxidized cellulose nanofibrils (TOCNF) and oxidized carbon nanotubes (CNT) were used as humidity-responsive films and evaluated using electroacoustic admittance (quartz crystal microbalance with impedance monitoring, QCM-I) and electrical resistivity. Water uptake and swelling phenomena were investigated in a range of relative humidity (% RH) between 30 and 60% and temperatures between 25 and 50 °C. The presence of CNT endowed fibril networks with high water accessibility, enabling fast and sensitive response to changes in humidity, with mass gains of up to 20%.

View Article and Find Full Text PDF

With increasing global water temperatures and nutrient runoff in recent decades, the blooming season of algae lasts longer, resulting in toxin concentrations that exceed safe limits for human consumption and for recreational use. From the different toxins, microcystin-LR has been reported as the main cyanotoxin related to liver cancer, and consequently its abundance in water is constantly monitored. In this work, we report a methodology for decorating cellulose nanofibrils with β-cyclodextrin or with poly(β-cyclodextrin) which were tested for the recovery of microcystin from synthetic water.

View Article and Find Full Text PDF

Environmental benign cellulosic textiles are hampered by their tendency to absorb water, which restricts their use in functional clothing. Herein we describe a method to functionalize textile surfaces using thin, open coatings based on natural wax particles and natural polymers rendering cellulosic fabrics water-repellent while retaining their feel and breathability. The impact of curing temperature, cationic polymer and fabric properties on wetting and long-term water-repellency were studied using contact angle measurements and scanning electron microscopy.

View Article and Find Full Text PDF

A new method is demonstrated for preparing antifouling and low nonspecific adsorption surfaces on poorly reactive hydrophobic substrates, without the need for energy-intensive or environmentally aggressive pretreatments. The surface-active protein hydrophobin was covalently modified with a controlled radical polymerization initiator and allowed to self-assemble as a monolayer on hydrophobic surfaces, followed by the preparation of antifouling surfaces by Cu(0)-mediated living radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) performed in situ. By taking advantage of hydrophobins to achieve at the same time the immobilization of protein A, this approach allowed to prepare surfaces for IgG1 binding featuring greatly reduced nonspecific adsorption.

View Article and Find Full Text PDF

Colloidal dispersions of cellulose nanofibrils (CNFs) are viable alternatives to cellulose II dissolutions used for filament spinning. The porosity and water vapor affinity of CNF filaments make them suitable for controlled breathability. However, many textile applications also require water repellence.

View Article and Find Full Text PDF

In the published article "Control of the Size of Silver Nanoparticles and Release of Silver in Heat Treated SiO₂-Ag Composite Powders" [1] a reference was omitted in the caption of Figure 4b. [..

View Article and Find Full Text PDF

The aim of this investigation was to determine the role of negative direct current and alternating current (plasma) corona treatments in modification of bio-based dispersion barrier coatings and the response of replacing fossil-based binder with a thermoplastic bio-based binder (starch). The study emphasizes the importance of understanding and optimizing electric corona discharge in order to obtain high oxidation level without harming the substrate and causing unintentional treatment of the reverse side. The coatings were exposed to different corona treatment conditions using a novel developed sheet-fed laboratory-scale device.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists combined two cool materials, graphene and micro-nanofibrillated cellulose (MNFC), to create stronger and more useful films.
  • They used a special method to mix them together, making sure the graphene was evenly spread without any extra chemicals.
  • The new films were better in many ways: they were tougher, could conduct electricity well, and could be made from renewable resources, which is good for the environment!*
View Article and Find Full Text PDF

Removal of left-over catalyst particles from carbon nanomaterials is a significant scientific and technological problem. Here, we present the physical and electrochemical study of application-specific carbon nanofibers grown from Pt-catalyst layers. The use of Pt catalyst removes the requirement for any cleaning procedure as the remaining catalyst particles have a specific role in the end-application.

View Article and Find Full Text PDF

The development of economically and ecologically viable strategies for superhydrophobization offers a vast variety of interesting applications in self-cleaning surfaces. Examples include packaging materials, textiles, outdoor clothing, and microfluidic devices. In this work, we produced superhydrophobic paper by spin-coating a dispersion of nanostructured fluorinated cellulose esters.

View Article and Find Full Text PDF

The growth of silver nanoparticles, the activation energy for silver particle growth, and the release of silver species in heat treated SiO 2 -Ag composite powders are investigated. The silver particle growth is controlled by heat treatment for 75 min of the as-synthesized SiO 2 -Ag composite powder at 300-800 °C. During heat treatment the mean size of the Ag particles increases from 10 nm up to 61 nm with increasing temperature, however, the particle size distribution widens and the mean size increases with increasing heat treatment temperature.

View Article and Find Full Text PDF

A concept for direct surface modification on self-standing films of cellulose nanofibrils (CNF) is demonstrated using an aminosilane group in cellulose compatible solvent (dimethyl acetamide, DMA). The chemically modified structure efficiently prevents the oxygen molecules from interacting with the nanocellulose film in the presence of water molecules. Oxygen permeability values lower than 1mLmmmdayatm were achieved at extremely high levels of relative humidity (RH95%).

View Article and Find Full Text PDF

Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers.

View Article and Find Full Text PDF

We present an approach to construct biocompatible and photoluminescent hybrid materials comprised of carbon quantum dots (CQDs) and TEMPO-oxidized cellulose nanocrystals (TO-CNCs). First, the amino-functionalized carbon quantum dots (NH-CQDs) were synthesized using a simple microwave method, and the TO-CNCs were prepared by hydrochloric acid (HCl) hydrolysis followed by TEMPO-mediated oxidation. The conjugation of NH-CQDs and TO-CNCs was conducted via carbodiimide-assisted coupling chemistry.

View Article and Find Full Text PDF

Basic adsorption of hydrophobic polymers from aprotic solvents was introduced as a platform technology to modify exclusively the surfaces of cellulose nanopapers. Dynamic vapor sorption demonstrated that the water vapor uptake ability of the nanopapers remained unperturbed, despite strong repellency to liquid water caused by the adsorbed hydrophobic polymer on the surface. This was enabled by the fact that the aprotic solvents used for adsorption did not swell the nanopaper unlike water that is generally applied as the adsorption medium in such systems.

View Article and Find Full Text PDF

We present an efficient approach to develop cellulose nanocrystal (CNC) hybrids with magnetically responsive FeO nanoparticles that were synthesized using the (Fe/Fe) coprecipitation. After 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-catalyzed oxidation of CNC, carbodiimide (EDC/NHS) was used for coupling amine-containing iron oxide nanoparticles that were achieved by dopamine ligand exchange (NH-FeO NPs). The as-prepared hybrids (FeO@CNC) were further complexed with Cu(II) ions to produce specific protein binding sites.

View Article and Find Full Text PDF

We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND or amine ND, carboxyl ND or hydroxyl groups ND and drop-casted or spray-coated onto substrate.

View Article and Find Full Text PDF

Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation.

View Article and Find Full Text PDF