The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.
View Article and Find Full Text PDFMicrobial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid.
View Article and Find Full Text PDFThe efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern.
View Article and Find Full Text PDFThe fungal secondary metabolite patulin is a mycotoxin widespread in foods and beverages which poses a serious threat to human health. However, no enzyme was known to be able to degrade this mycotoxin. For the first time, we discovered that a manganese peroxidase (MnP) from can efficiently degrade patulin.
View Article and Find Full Text PDFAcetylated glucuronoxylan is one of the most common types of hemicellulose in nature. The structure is formed by a β-(1→4)-linked D-xylopyranosyl (Xyl) backbone that can be substituted with an acetyl group at -2 and 3 positions, and α-(1→2)-linked 4--methylglucopyranosyluronic acid (MeGlcA). Acetyl xylan esterases (AcXE) that target mono- or doubly acetylated Xyl are well characterized; however, the previously studied AcXE from (AcXE) was the first to remove the acetyl group from 2--MeGlcA-3--acetyl-substituted Xyl units, yet structural characteristics of these enzymes remain unspecified.
View Article and Find Full Text PDFBackground: Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g.
View Article and Find Full Text PDFCatechol oxidases and tyrosinases are coupled binuclear copper enzymes that oxidize various o-diphenolic compounds to corresponding o-quinones. Tyrosinases have an additional monooxygenation ability to hydroxylate monophenol to o-diphenol. It is still not clear what causes the difference in the catalytic activities.
View Article and Find Full Text PDFCoupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.
View Article and Find Full Text PDFBifunctional glycoside hydrolases have potential for cost-savings in enzymatic decomposition of plant cell wall polysaccharides for biofuels and bio-based chemicals. The N-terminal GH10 domain of a bifunctional multimodular enzyme Xyn10C/Cel48B from is an enzyme able to degrade xylan and cellulose simultaneously. However, the molecular mechanism underlying its substrate promiscuity has not been elucidated.
View Article and Find Full Text PDF