Separation in single-cell mass spectrometry (MS) improves molecular coverage and quantification; however, it also elongates measurements, thus limiting analytical throughput to study large populations of cells. Here, we advance the speed of bottom-up proteomics by capillary electrophoresis (CE) high-resolution mass spectrometry (MS) for single-cell proteomics. We adjust the applied electrophoresis potential to readily control the duration of electrophoresis.
View Article and Find Full Text PDFUnlabelled: Single-cell mass spectrometry (MS) opens a proteomic window onto the inner workings of cells. Here, we report the discovery characterization of the subcellular proteome of single, identified embryonic cells in record speed and molecular coverage. We integrated subcellular capillary microsampling, fast capillary electrophoresis (CE), high-efficiency nano-flow electrospray ionization, and orbitrap tandem MS.
View Article and Find Full Text PDFMolecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been mostly limited to transcripts and a few proteins, the latter due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog (), a popular model of development, has long been known to be the origin of signals that pattern the mesoderm and central nervous system. Molecular screens of the SMO have identified several genes responsible for the ability of the SMO to establish the body axis.
View Article and Find Full Text PDFAbundant proteins challenge deep mass spectrometry (MS) analysis of the proteome. Yolk, the source of food in many developing vertebrate embryos, complicates chemical separation and interferes with detection. We report here a strategy that enhances bottom-up proteomics in yolk-laden specimens by diluting the interferences using a yolk-depleted carrier (YODEC) proteome via isobaric multiplexing quantification.
View Article and Find Full Text PDFMolecular composition is intricately intertwined with cellular function, and elucidation of this relationship is essential for understanding life processes and developing next-generational therapeutics. Technological innovations in capillary electrophoresis (CE) and liquid chromatography (LC) mass spectrometry (MS) provide previously unavailable insights into cellular biochemistry by allowing for the unbiased detection and quantification of molecules with high specificity. This chapter presents our validated protocols integrating ultrasensitive MS with classical tools of cell, developmental, and neurobiology to assess the biological function of important biomolecules.
View Article and Find Full Text PDFBiological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles.
View Article and Find Full Text PDFCharacterization of molecular events as cells give rise to tissues and organs raises a potential to better understand normal development and design efficient remedies for diseases. Technologies enabling accurate identification and quantification of diverse types and large numbers of proteins would provide still missing information on molecular mechanisms orchestrating tissue and organism development in space and time. Here, we present a mass spectrometry-based protocol that enables the measurement of thousands of proteins in identified cell lineages in Xenopus laevis (frog) embryos.
View Article and Find Full Text PDFUnderstanding the biochemistry of the cell requires measurement of all the molecules it produces. Single-cell proteomics recently became possible through advances in microanalytical sample preparation, separation by nano-flow liquid chromatography (nanoLC) and capillary electrophoresis (CE), and detection using electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). Here, we demonstrate capillary microsampling CE-ESI-HRMS to be scalable to proteomics across broad cellular dimensions.
View Article and Find Full Text PDFCurr Top Dev Biol
February 2022
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology.
View Article and Find Full Text PDF