Publications by authors named "Leena Chaudhuri"

Morbidly obese patients who accomplish substantial weight loss often display a long-term decline in their resting metabolism, causing even relatively restrained caloric intake to trigger a relapse to the obese state. Paradoxically, we observed that morbidly obese mice receiving chemotherapy for cancer experienced spontaneous weight reduction despite unabated ingestion of their high fat diet (HFD). This response to chemotherapy could also be achieved in morbidly obese mice without cancer.

View Article and Find Full Text PDF

Adoptive cell therapy (ACT) employing ex vivo-generated tumor antigen-specific CD8+ T cells shows tumor efficacy when the transferred cells possess both effector and memory functions. New strategies based on understanding of mechanisms that balance CD8+ T cell differentiation toward effector and memory responses are highly desirable. Emerging information confirms a central role for antigen-induced metabolic reprogramming in CD8+ T cell differentiation and clonal expansion.

View Article and Find Full Text PDF

Novel combinations targeting new molecular vulnerabilities are needed to improve the outcome of patients with acute myeloid leukemia. We recently identified WEE1 kinase as a novel target in leukemias. To identify genes that are synthetically lethal with WEE1 inhibition, we performed a short interfering RNA screen directed against cell cycle and DNA repair genes during concurrent treatment with the WEE1 inhibitor MK1775.

View Article and Find Full Text PDF

Proliferating cells consume more glucose to cope with the bioenergetics and biosynthetic demands of rapidly dividing cells as well as to counter a shift in cellular redox environment. This study investigates the hypothesis that manganese superoxide dismutase (MnSOD) regulates cellular redox flux and glucose consumption during the cell cycle. A direct correlation was observed between glucose consumption and percentage of S-phase cells in MnSOD wild-type fibroblasts, which was absent in MnSOD homozygous knockout fibroblasts.

View Article and Find Full Text PDF

To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are environmental chemical contaminants that can produce reactive oxygen species (ROS) by autoxidation of dihydroxy-PCBs and redox-cycling. We investigate the hypothesis that PCB induced perturbations in ROS signaling regulate the entry of quiescent cells into the proliferative cycle. Quiescent MCF-10A human breast epithelial cells were incubated with 0-3 micromolar of 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB 153), and Aroclor 1254 for 4 days.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) and their metabolites are environmental chemical contaminants which can produce reactive oxygen species (ROS) by auto-oxidation of di-hydroxy PCBs as well as the reduction of quinones and redox-cycling. We investigate the hypothesis that 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3), induced ROS-signaling inhibits cellular proliferation. Monolayer cultures of exponentially growing asynchronous human non-malignant prostate epithelial cells (RWPE-1) were incubated with 0-6 μM of 4-Cl-BQ and harvested at the end of 72 h of incubation to assess antioxidant enzyme expression, cellular ROS levels, cell growth, and cell cycle phase distributions.

View Article and Find Full Text PDF

Manganese superoxide dismutase (SOD2) is a nuclear encoded and mitochondria localized antioxidant enzyme that converts mitochondria derived superoxide to hydrogen peroxide. This study investigates the hypothesis that mitochondria derived reactive oxygen species (ROS) regulate ionizing radiation (IR) induced transformation in normal cells. Mouse embryonic fibroblasts (MEFs) with wild type SOD2 (+/+), heterozygous SOD2 (+/-), and homozygous SOD2 (-/-) genotypes were irradiated with equitoxic doses of IR, and assayed for transformation frequency, cellular redox environment, DNA damage, and cell cycle checkpoint activation.

View Article and Find Full Text PDF

The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence.

View Article and Find Full Text PDF