The prevalence of childhood overweight and obesity is increasing in the last decades, also in children with Cerebral Palsy (CP). Even though it has been established that an increase in weight can have important negative effects on gait in healthy adults and children, it has not been investigated what the effect is of an increase in body weight on the characteristics of gait in children with CP. In CP, pre and post three-dimensional gait analyses are performed to assess the effectiveness of an intervention.
View Article and Find Full Text PDFNeurorehabil Neural Repair
October 2016
Background Even though lower-limb motor disorders are core features of spastic cerebral palsy (sCP), the relationship with brain lesions remains unclear. Unraveling the relation between gait pathology, lower-limb function, and brain lesions in sCP is complex for several reasons; wide heterogeneity in brain lesions, ongoing brain maturation, and gait depends on a number of primary motor functions/deficits (eg, muscle strength, spasticity). Objective To use a comprehensive approach combining conventional MRI and diffusion tensor imaging (DTI) in children with sCP above 3 years old to relate quantitative parameters of brain lesions in multiple brain areas to gait performance.
View Article and Find Full Text PDFAim: To describe the development of a novel rating scale for classification of brain structural magnetic resonance imaging (MRI) in children with cerebral palsy (CP) and to assess its interrater and intrarater reliability.
Method: The scale consists of three sections. Section 1 contains descriptive information about the patient and MRI.
Children with unilateral Cerebral Palsy (CP) have several gait impairments, amongst which impaired gait stability may be one. We tested whether a newly developed stability measure (the foot placement estimator, FPE) which does not require long data series, can be used to asses gait stability in typically developing (TD) children as well as children with CP. In doing so, we tested the FPE's sensitivity to the assumptions needed to calculate this measure, as well as the ability of the FPE to detect differences in stability between children with CP and TD children, and differences in walking speed.
View Article and Find Full Text PDFArm movements during gait in children with cerebral palsy (CP) are altered compared to typically developing children (TD). We investigated whether these changes in arm movements alter interlimb coordination in CP gait. 3D gait analysis was performed in CP (diplegia [DI]: N = 15 and hemiplegia [HE]: N = 11) and TD (N = 24) children at preferred and fast walking speeds.
View Article and Find Full Text PDFBackground: Toddlers learning to walk adopt specific 'guard' arm postures to maintain their balance during forward progression. In Cerebral Palsy (CP), the cause of the altered arm postures during walking has not been studied.
Aim: To investigate whether the altered arm posture in children with CP is a compensation for instability during walking.
The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach tasks (forwards, upwards, and sideways), two reach-to-grasp tasks (with objects requiring different hand orientations), and three gross motor tasks. Spatiotemporal (movement duration, trajectory straightness, maximum velocity, and timing of maximum velocity), as well as kinematic parameters (discrete angles and waveforms of the trunk, scapula, shoulder, elbow and wrist), were compared between 20 children with HCP (age 10.
View Article and Find Full Text PDFThree-dimensional gait analysis (3DGA) generates a wealth of highly variable data. Gait classifications help to reduce, simplify and interpret this vast amount of 3DGA data and thereby assist and facilitate clinical decision making in the treatment of CP. CP gait is often a mix of several clinically accepted distinct gait patterns.
View Article and Find Full Text PDFChildren with Cerebral Palsy (CP) have difficulties walking at a normal or high speed. It is known that arm movements play an important role to achieve higher walking speeds in healthy subjects. However, the role played by arm movements while walking at different speeds has received no attention in children with CP.
View Article and Find Full Text PDFSeveral positive influences of orthoses on gait in children with cerebral palsy have been documented, as well as some detrimental effects. Most importantly, push-off is decreased in orthoses, compromising a physiological third ankle rocker. The aim of this study was to evaluate the effect of three types of orthosis on gait in a homogeneous group of children.
View Article and Find Full Text PDFSeveral studies indicated that walking with an ankle foot orthosis (AFO) impaired third rocker. The purpose of this study was to evaluate the effects of two types of orthoses, with similar goal settings, on gait, in a homogeneous group of children, using both barefoot and shoe walking as control conditions. Fifteen children with hemiplegia, aged between 4 and 10 years, received two types of individually tuned AFOs: common posterior leaf-spring (PLS) and Dual Carbon Fiber Spring AFO (CFO) (with carbon fibre at the dorsal part of the orthosis).
View Article and Find Full Text PDF