Objective: NCT01780675, a multicenter randomized phase III trial of prophylactic cranial irradiation (PCI) versus PCI with hippocampal sparing in small cell lung cancer (SCLC) investigated neurocognitive decline and safety. As part of quality assurance, we evaluated if hippocampal avoidance (HA)-PCI was performed according to the NCT01780675 trial protocol instructions, and performed a safety analysis to study the incidence and location of brain metastases for patients treated with HA-PCI.
Methods: This retrospective analysis evaluated the quality of the irradiation given in the randomized controlled trial (RCT) comparing SCLC patients receiving PCI with or without hippocampal avoidance, using intensity modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT).
The aim is to evaluate the incidental dose to the lymphatic regions in prostate-only radiotherapy (PORT) and to compare hematological outcome between PORT and whole pelvic radiotherapy (WPRT) in node-positive prostate cancer (pN1 PCa), in the era of modern radiotherapy techniques. We performed a prospective phase 3 trial in which a total of 64 pN1 PCa patients were randomized between PORT (ARM A) and WPRT (ARM B) delivered with volumetric-modulated arc therapy (VMAT). The lymph node (LN) regions were delineated separately and differences between groups were calculated using Welch -tests.
View Article and Find Full Text PDFPurpose: We report on a dosimetrical study of three patient positions (supine, prone dive, and prone crawl) and four irradiation techniques for whole-breast irradiation (WBI): wedged-tangential fields (W-TF), tangential-field intensity-modulated radiotherapy (TF-IMRT), multi-beam IMRT (MB-IMRT), and intensity-modulated arc therapy (IMAT). This is the first study to evaluate prone crawl positioning in WBI and the first study to quantify dosimetrical and anatomical differences with prone dive positioning.
Methods: We analyzed five datasets with left- and right-sided patients (n = 51).
Purpose: Prone whole breast irradiation results in lower dose to organs at risk compared with supine position, especially lung dose. However, the adoption of prone position for whole breast irradiation + lymph node irradiation remains limited and data on lymph node irradiation in 5 fractions are lacking. Although the study was ended prematurely for the primary endpoint (breast retraction at 2 years), we decided to report acute toxicity for prone and supine positions and 5 and 15 fractions.
View Article and Find Full Text PDFPurpose: In 2016, international consensus clinical target volume (CTV) guidelines for adjuvant radiation treatment after radical cystectomy in patients with muscle-invasive bladder cancer with high risk for locoregional failure (LRF) were published. A subsequent external validation study recommended several CTV optimizations (CTV-OPT). This study aimed to update international consensus guidelines based on new clinical experiences.
View Article and Find Full Text PDFIntroduction: Postmastectomy radiotherapy reduces the risk of locoregional recurrence in breast cancer patients. The first results on accelerated radiotherapy in five fractions after breast conserving surgery are promising. The data on postmastectomy radiotherapy in five or six fractions is limited.
View Article and Find Full Text PDFIn whole breast and regional nodal irradiation (WB + RNI), breathhold increases organ at risk (OAR) sparing. WB + RNI is usually performed in supine position, because positioning materials obstruct beam paths in prone position. Recent advancements allow prone WB + RNI (pWB + RNI) with increased sparing of OARs compared to supine WB + RNI.
View Article and Find Full Text PDFWe report on a comparative dosimetrical study between deep inspiration breath hold (DIBH) and shallow breathing (SB) in prone crawl position for photon and proton radiotherapy of whole breast (WB) and locoregional lymph node regions, including the internal mammary chain (LN_MI). We investigate the dosimetrical effects of DIBH in prone crawl position on organs-at-risk for both photon and proton plans. For each modality, we further estimate the effects of lung and heart doses on the mortality risks of different risk profiles of patients.
View Article and Find Full Text PDFIntroduction: A simultaneous integrated boost (SIB) leads to less acute toxicity. Less is known for late toxicity due to SIB. In this first and only randomized trial, two-years toxicity is analysed.
View Article and Find Full Text PDFPurpose: Prone position for whole breast irradiation (WBI) results in lower rates of toxicity and reduced ipsilateral mean lung and heart doses. No randomized trials comparing toxicity and cosmesis at 5 years with prone and supine positioning are available.
Methods And Materials: In this phase 2 open-label trial, 100 patients with large breast size requiring WBI were randomized between prone and supine positioning.
Introduction: Acceleration of radiotherapy in 5 fractions for breast cancer can reduce the burden of treatment. We report on acute toxicity after whole-breast irradiation with a simultaneous integrated boost in 5 fractions over 10-12 days.
Material And Methods: Acute toxicity and health-related quality of life (HRQoL) of 200 patients, randomized between a 15- or 5-fractions schedule, were collected, using the CTCAE toxicity scoring system, the Multidimensional Fatigue Inventory, EORTC QLQ-C30 and BR23 and the BREAST-Q questionnaire.
Prone positioning for whole-breast irradiation (WBI) reduces dose to organs at risk, but reduces set-up speed, precision, and comfort. We aimed to improve these problems by placing patients in prone crawl position on a newly developed crawl couch (CrC). A group of 10 right-sided breast cancer patients requiring WBI were randomized in this cross-over trial, comparing the CrC to a standard prone breastboard (BB).
View Article and Find Full Text PDFBackground And Purpose: The prognostic value of radiomics for non-small cell lung cancer (NSCLC) patients has been investigated for images acquired prior to treatment, but no prognostic model has been developed that includes the change of radiomic features during treatment. Therefore, the aim of this study was to investigate the potential added prognostic value of a longitudinal radiomics approach using cone-beam computed tomography (CBCT) for NSCLC patients.
Materials And Methods: This retrospective study includes a training dataset of 141 stage I-IV NSCLC patients and three external validation datasets of 94, 61 and 41 patients, all treated with curative intended (chemo)radiotherapy.
We report on a dosimetrical study comparing supine (S) and prone-crawl (P) position for radiotherapy of whole breast (WB) and loco-regional lymph node regions, including the internal mammary chain (LN_IM). Six left sided breast cancer patients were CT-simulated in S and P positions and four patients only in P position. Treatment plans were made using non-coplanar volumetric modulated arc photon therapy (VMAT) or pencil beam scanning intensity modulated proton therapy (IMPT).
View Article and Find Full Text PDFIntroduction: Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints.
Methods And Materials: In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE).
Purpose: To investigate crawl position with the arm at the treated side alongside the body and at the opposite side above the head for prone treatment in patients requiring breast and regional lymph node irradiation.
Methods: Patient support devices for crawl position were built for CT simulation and treatment. An asymmetric fork design resulted from an iterative process of prototype construction and testing.
Background: Prone whole breast irradiation (WBI) leads to reduced heart and lung doses in breast cancer patients receiving adjuvant radiotherapy. In this feasibility trial, we investigated the prone position for whole breast + lymph node irradiation (WB + LNI).
Methods: A new support device was developed for optimal target coverage, on which patients are positioned in a position resembling a phase from the crawl swimming technique (prone crawl position).
Purpose: To investigate, in a prospective phase 1 to 2 trial, the safety and feasibility of delivering external beam radiation therapy in 5 fractions to the breast or thoracic wall, including boost and/or lymph nodes if needed, to women aged ≥65 years with breast cancer.
Methods And Materials: Ninety-five patients aged ≥65 years, referred for adjuvant radiation therapy, were treated in 5 fractions over 12 days with a total dose of 28.5 Gy/5.
Background And Purpose: The safety of a simultaneous integrated boost (SIB) in combination with prone hypofractionated whole-breast irradiation (WBI) was investigated.
Materials And Methods: 167 patients were randomized between WBI with a sequential boost (SeB) or SIB. All patients were treated in prone position to 40.
Background: Adaptive radiotherapy (ART) could be a tool to reduce toxicity and to facilitate dose escalation in stage III NSCLC. Our aim was to identify the most appropriate time and potential benefit of ART.
Material And Methods: We analyzed volume reduction and dosimetric consequences of 41 patients who were treated with concurrent (cCRT) (n = 21) or sequential (sCRT) chemoradiotherapy to a median dose of 70 Gy, 2 Gy/F.
Purpose: To report on the planning procedure, quality control, and clinical implementation of intensity-modulated arc therapy (IMAT) delivering a simultaneous integrated boost (SIB) in patients with primary irresectable cervix carcinoma.
Patients And Methods: Six patients underwent PET-CT (positron emission tomography-computed tomography) and MRI (magnetic resonance imaging) before treatment planning. Prescription (25 fractions) was (1) a median dose (D(50)) of 62, 58 and 56 Gy to the primary tumor (GTV_cervix), primary clinical target volume (CTV_cervix) and its planning target volume (PTV_cervix), respectively; (2) a D(50) of 60 Gy to the PET-positive lymph nodes (GTV_nodes); (3) a minimal dose (D(98)) of 45 Gy to the planning target volume of the elective lymph nodes (PTV_nodes).