Background: Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date.
View Article and Find Full Text PDFBackground: Childhood cognitive development depends on neuroimmune interactions. Immunomodulation by early-life microbial exposure may influence neuropsychological function. In this study, we investigate the association between residential indoor microbiota and cognition and behavior among preschoolers.
View Article and Find Full Text PDFIntroduction: During early childhood, neuronal networks are highly susceptible to environmental factors. Previous research suggests that green space exposure is beneficial for cognitive functioning. Here, we investigate the associations between residential green space exposure and behavioral problems and cognitive development in children aged four to six years.
View Article and Find Full Text PDFThe placenta can be regarded as a mirror of the events to which the fetus is exposed during development. The placental proteome has been studied with several methodologies differing in sample handling, protein extraction, and processing. We optimized a protocol to analyze the placental proteome by means of label-free nano-LC-MS/MS mass spectrometry with regard to sample treatment, protein extraction, and protein digestion, in order to obtain a high protein concentration for identification of a specific protein signature according to the conditions studied.
View Article and Find Full Text PDFImportance: Neurocognitive functions develop rapidly in early childhood and depend on the intrinsic cooperation between cerebral structures and the circulatory system. The retinal microvasculature can be regarded as a mirror image of the cerebrovascular circulation.
Objective: To investigate the association between retinal vessel characteristics and neurological functioning in children aged 4 to 5 years.
Background: Particulate matter exposure during in utero life may entail adverse health outcomes later in life. The microvasculature undergoes extensive, organ-specific prenatal maturation. A growing body of evidence shows that cardiovascular disease in adulthood is rooted in a dysfunctional fetal and perinatal development, in particular that of the microcirculation.
View Article and Find Full Text PDFImportance: Maternal prepregnancy body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) has previously been associated with offspring cardiometabolic risk factors, such as fat mass, glucose and insulin levels, and blood pressure, but these associations appear to be largely mediated by offspring BMI. To our knowledge, no studies have assessed alterations in the retinal microvasculature in association with maternal prepregnancy BMI.
Objective: To investigate the association between maternal prepregnancy BMI and anthropometric parameters, blood pressure, and retinal vessel parameters in children age 4 to 6 years.
Cardiovascular risk factors are usually better tolerated, and can therefore be perceived as less harmful, at a young age. However, over time the effects of these adverse factors may persist or accumulate and lead to excess morbidity and mortality from cardiovascular diseases later in life. Until now, reference values for the basic cardiovascular health characteristics of 4-to-6 year-old children are lacking.
View Article and Find Full Text PDFBackground: Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution.
View Article and Find Full Text PDF