Publications by authors named "Leen C J Thomassen"

UV-curable polyurethane dispersions (UV-PUDs) have applications in coatings for a variety of materials. Historically, the neutralization and dispersion steps of the UV-PUD production process have been performed in batch. However, continuous processing might reduce capital and operating costs, improve the dispersion characteristics, and facilitate scale-up.

View Article and Find Full Text PDF

Microencapsulation is almost exclusively performed in batch processes. With today's chemistry increasingly performed in flow reactors, this work aims to realise a continuous reactor setup for the encapsulation of an ester with a polyuria (PU) shell. The generation of an emulsion template is performed in a recirculation loop driven by a pump and equipped with static mixers, screen type and Kenics.

View Article and Find Full Text PDF

The wide and frequent use of engineered nanomaterials (NMs) raises serious concerns about their safety for human health. Our aim is to evaluate the embryotoxic potential of silver, uncoated and coated zinc oxide, titanium dioxide and silica NMs through the embryonic stem cell test (EST). EST is a validated in vitro assay that permits classification of chemicals into three classes (non, weakly or strongly embryotoxic).

View Article and Find Full Text PDF

Serum proteins have been shown to modulate the cytotoxic and genotoxic responses to nanomaterials. The aim was to investigate the influence of serum on the induction of micronuclei (MN) by nanoparticles (NPs) of different sizes. Therefore, A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles (SNPs) were used as models.

View Article and Find Full Text PDF

There is evidence that nanoparticles can induce endothelial dysfunction. Here, the effect of monodisperse amorphous silica nanoparticles (SiO(2)-NPs) of different diameters on endothelial cells function is examined. Human endothelial cell line (EA.

View Article and Find Full Text PDF

The aim of this study was to test the influence of nanoparticle size and surface area (SA) on cytokine secretion by co-cultures of pulmonary epithelial cells (A549), macrophages (differentiated THP-1 cells) and endothelium cells (EA.hy926) in a two-compartment system. We used monodisperse amorphous silica nanoparticles (2, 16, 60 and 104 nm) at concentrations of 5 μg/cm² cell culture SA or 10 cm² particle SA/cm².

View Article and Find Full Text PDF

Amorphous silica nanoparticles (SiO₂-NPs) have found broad applications in industry and are currently intensively studied for potential uses in medical and biomedical fields. Several studies have reported cytotoxic and inflammatory responses induced by SiO₂-NPs in different cell types. The present study was designed to examine the association of oxidative stress markers with SiO₂-NP induced cytotoxicity in human endothelial cells.

View Article and Find Full Text PDF

In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added.

View Article and Find Full Text PDF

Nanosized zeolite particles are important materials for many applications in the field of nanotechnology. The possible adverse effects of these nanomaterials on human health have been scarcely investigated and remain largely unknown. This study reports the synthesis of nanozeolites Y and A with particle sizes of 25-100 nm and adequate colloidal stability for in vitro cytotoxicity experiments.

View Article and Find Full Text PDF

A well-defined silica nanoparticle model system was developed to study the effect of the size and structure of aggregates on their membranolytic activity. The aggregates were stable and characterized using transmission electron microscopy, dynamic light scattering, nitrogen adsorption, small-angle X-ray scattering, infrared spectroscopy, and electron paramagnetic resonance. Human red blood cells were used for assessing the membranolytic activity of aggregates.

View Article and Find Full Text PDF

The aggregation state of NP has been a significant source of difficulty for assessing their toxic activity and great efforts have been done to reduce aggregation of and/or to disperse NP in experimental systems. The exact impact of aggregation on toxicity has, however, not been adequately assessed. Here we compared in vitro the cytotoxic activity of stable monodisperse and aggregated silicon-based nanoparticles (SNP) without introducing a dispersing agent that may affect NP properties.

View Article and Find Full Text PDF

We assessed lethal and sublethal side-effects of Ludox TMA silica nanoparticles on a terrestrial pollinator, Bombus terrestris (Linnaeus), via a dietary exposure. Dynamic light scattering analysis confirmed that silica Ludox TMA nanoparticles remained in suspension in the drinking sugar water. Exposure of bumblebee microcolonies during 7 weeks to the different nanoparticle concentrations (high: 34, 170 and 340 mg/l and low: 34 and 340 μg/l) did not cause worker mortality compared to the controls.

View Article and Find Full Text PDF

Methods are needed to assess cytotoxicity and genotoxicity of nanoparticles (NPs). The influence of serum and the use of cytochalasin-B were assessed on the cellular uptake of amorphous silica NPs (SNPs) and their biological effects. Our observations indicate that some methodological approaches may modulate the outcome of the assay.

View Article and Find Full Text PDF

Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms.

View Article and Find Full Text PDF

We explored how to assess the genotoxic potential of nanosize particles with a well validated assay, the in vitro cytochalasin-B micronucleus assay, detecting both clastogens and aneugens. Monodisperse Stöber amorphous silica nanoparticles (SNPs) of three different sizes (16, 60 and 104 nm) and A549 lung carcinoma cells were selected as models. Cellular uptake of silica was monitored by ICP-MS.

View Article and Find Full Text PDF

Identifying the physico-chemical characteristics of nanoparticles (NPs) that drive their toxic activity is the key to conducting hazard assessment and guiding the design of safer nanomaterials. Here we used a set of 17 stable suspensions of monodisperse amorphous silica nanoparticles (SNPs) with selected variations in size (diameter, 2-335 nm), surface area (BET, 16-422 m(2)/g) and microporosity (micropore volume, 0-71 microl/g) to assess with multiple regression analysis the physico-chemical determinants of the cytotoxic activity in four different cell types (J774 macrophages, EAHY926 endothelial cells, 3T3 fibroblasts and human erythrocytes). We found that the response to these SNPs is governed by different physico-chemical parameters which vary with cell type: In J774 macrophages, the cytotoxic activity (WST1 assay) increased with external surface area (alphas method) and decreased with micropore volume (r(2) of the model, 0.

View Article and Find Full Text PDF

Background: Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways.

Results: Detailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death.

View Article and Find Full Text PDF

To evaluate whether the relative atherogenicity of VLDL and LDL is dependent on the topographic site, atherosclerosis was compared at four topographic sites in homozygous LDL receptor (LDLr)-deficient rabbits fed normal chow and in heterozygous LDLr-deficient rabbits with the same genetic background fed a 0.15% cholesterol diet to match cholesterol levels. VLDL cholesterol was significantly higher and LDL cholesterol significantly lower in LDLr(+/-) diet rabbits compared with LDLr(-/-) rabbits.

View Article and Find Full Text PDF

For the investigation of the interaction of nanoparticles with biomolecules, cells, organs, and animal models there is a need for well-characterized nanoparticle suspensions. In this paper we report the preparation of monodisperse dense amorphous silica nanoparticles (SNP) suspended in physiological media that are sterile and sufficiently stable against aggregation. SNP sols with various particle sizes (2-335 nm) were prepared via base-catalyzed hydrolysis and polymerization of tetraethyl orthosilicate under sterile conditions using either ammonia (Stober process (1) ) or lysine catalyst (Lys-Sil process (2) ).

View Article and Find Full Text PDF

The ubiquitous presence of nanoparticles (NPs) together with increasing evidence linking them to negative health effects points towards the need to develop the understanding of mechanisms by which they exert toxic effects. This study was designed to investigate the role of surface area and oxidative stress in the cellular effects of two chemically distinct NPs, carbon black (CB) and titanium dioxide (TiO(2)), on the bronchial epithelial cell line (16HBE14o-). CB and TiO(2) NPs were taken up by 16HBE cells in a dose-dependent manner and were localized within the endosomes or free in the cytoplasm.

View Article and Find Full Text PDF

The effect that monodisperse amorphous spherical silica particles of different sizes have on the viability of endothelial cells (EAHY926 cell line) is investigated. The results indicate that exposure to silica nanoparticles causes cytotoxic damage (as indicated by lactate dehydrogenase (LDH) release) and a decrease in cell survival (as determined by the tetrazolium reduction, MTT, assay) in the EAHY926 cell line in a dose-related manner. Concentrations leading to a 50% reduction in cell viability (TC(50)) for the smallest particles tested (14-, 15-, and 16-nm diameter) ranging from 33 to 47 microg cm(-2) of cell culture differ significantly from values assessed for the bigger nanoparticles: 89 and 254 microg cm(-2) (diameter of 19 and 60 nm, respectively).

View Article and Find Full Text PDF

Because of their small size and large specific surface area (SA), insoluble nanoparticles are almost not affected by the gravitational force and are generally formulated in stable suspensions or sols. This raises, however, a potential difficulty in in vitro assay systems in which cells adhering to the bottom of a culture vessel may not be exposed to the majority of nanoparticles in suspension. J.

View Article and Find Full Text PDF