Publications by authors named "Leeder J"

Identification of the human cytochrome P450 (P450) enzymes involved in the metabolism of cisapride and racemic norcisapride [(+/-)-norcisapride] was investigated at 0.1 and 1 microM, concentrations that span the mean plasma C(max) for cisapride. Formation of norcisapride (Nor), 3-fluoro-4-hydroxycisapride (3F), and 4-fluoro-2-hydroxycisapride (4F) from cisapride and an uncharacterized metabolite (UNK) from (+/-)-norcisapride in human liver microsomes (HLMs) were consistent with Michaelis-Menten kinetics for a single enzyme (K(m), 6.

View Article and Find Full Text PDF

CYP2C9 is the major P450 2C enzyme in human liver and contributes to the metabolism of a number of clinically important substrate drugs. This polymorphically expressed enzyme has been studied in Caucasian, Asian, and to some extent in African American populations, but little is known about the genetic variation in Native American populations. We therefore determined the 2C9*2 (Arg144Cys) and 2C9*3 (Ile359Leu) allele frequencies in 153 Native Canadian Indian (CNI) and 151 Inuit subjects by PCR-RFLP techniques.

View Article and Find Full Text PDF
Pharmacogenetics and pharmacogenomics.

Pediatr Clin North Am

June 2001

This article introduces pharmacogenetics and pharmacogenomics in the context of pharmacotherapy in the pediatric ICU setting. As an independent discipline (if it can be considered as such), pediatric or developmental pharmacogenetics is essentially at a neonatal stage. Available pharmacokinetic data derived from studies of drugs that are largely dependent on a single CYP pathway for their elimination provide initial assessments of the developmental profile of that particular CYP isoform.

View Article and Find Full Text PDF

Background: Simultaneous administration of several probes enhances the utility of phenotyping, but poor specificity, side effects, and use of drugs not approved by the Food and Drug Administration limit the usefulness of prior phenotyping cocktails.

Objectives: To evaluate potential drug-drug interactions associated with use of a cocktail of caffeine, omeprazole, dextromethorphan, and midazolam for simultaneous phenotyping of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase.

Methods: Twelve subjects received caffeine + dextromethorphan, omeprazole, and midazolam (each alone), and a cocktail of caffeine + dextromethorphan + omeprazole + midazolam.

View Article and Find Full Text PDF

We evaluated the utility of the 3-methoxymorphinan/dextromethorphan (3MM/DM) urinary ratio to reflect baseline CYP3A activity, and its ability to discriminate moderate CYP3A inhibition during fluvoxamine therapy. For 4 months, oral dextromethorphan 30 mg and intravenous midazolam 0.025 mg/kg were administered to nine men every 14 days, and to 10 premenopausal women during the follicular and luteal phases of their menstrual cycles.

View Article and Find Full Text PDF

For over two decades, pediatricians have been made aware of the potential risk associated with the acute ingestion of large single and/or multiple doses of acetaminophen (APAP). Clearly, APAP-induced hepatotoxicity remains as a recognized medical emergency which, when treated promptly with appropriate gastrointestinal decontamination and when indicated, with the antidote N-acetylcysteine, has a uniformly good clinical outcome. Recently, the hepatotoxic potential associated with "therapeutic" APAP administration has been brought to the attention of the pediatric community.

View Article and Find Full Text PDF

Cytochrome P4502D6 (CYP2D6) is a highly polymorphic gene locus with > 50 variant alleles which lead to a wide range in enzymatic activity. So called poor metabolizers are carriers of any two non-functional alleles of the CYP2D6 gene. CYP2D6 genotyping is cumbersome and the question of how much genotyping is necessary for an accurate phenotype prediction is still debated.

View Article and Find Full Text PDF

The maturation of organ systems during fetal life and childhood exerts a profound effect on drug disposition. The maturation of drug-metabolising enzymes is probably the predominant factor accounting for age-associated changes in non-renal drug clearance. The group of drug-metabolising enzymes most studied are the cytochrome P450 (CYP) superfamily.

View Article and Find Full Text PDF

Most dextromethorphan CYP2D6 phenotyping studies use a 30-mg dose, but data that show superiority of any particular dose are lacking. We compared metabolic ratios from six different dextromethorphan phenotyping doses to ascertain whether linearity existed over a dosage range. Forty subjects were enrolled in the study.

View Article and Find Full Text PDF

There is little and conflicting information concerning polymorphism of CYP2D6 in populations of Africans and African descent. Estimations of the prevalence of poor metabolizers (PMs) in Black populations have ranged from 0 to 19 percent, and unlike Caucasian and Asian populations, there seems to be a poor correlation in metabolic ratios (MRs) between commonly used CYP2D6 probe drugs. A novel mutant allele, CYP2D6*17, which is associated with reduced metabolic rates, has been determined to occur in high frequencies in African and African American populations.

View Article and Find Full Text PDF

During human development impressive changes in drug disposition occur. An important determinant of drug clearance is metabolism, something that is not only determined by ontogenic regulation but also by genetic processes which add to the variability of drug metabolism during different stages of childhood. Therefore, an understanding of the developmental regulation of different metabolic pathways, together with information on the genetic determinants of drug metabolism, will increase the knowledge of inter- and intraindividual variability in drug disposition during childhood.

View Article and Find Full Text PDF

Cytochrome P-450 (CYP) 2D6 is responsible for the biotransformation of over 35 pharmacologic agents. In the process of studying CYP2D6 we identified phenotype-genotype discordance in two individuals receiving terbinafine. This prompted evaluation of the potential for terbinafine to inhibit CYP2D6 in vitro.

View Article and Find Full Text PDF

Background: Terbinafine is an orally active antifungal used in the treatment of dermatophytoses. To date, studies evaluating the effect of terbinafine on the cytochromes P450 have failed to show any significant interactions. This prospective open-label study was designed to confirm our previous finding that terbinafine may inhibit CYP2D6.

View Article and Find Full Text PDF

Intraindividual variability and the effects of menstrual cycle phase on CYP2D6 activity were evaluated by dextromethorphan phenotyping in 20 Caucasian normal volunteers. Dextromethorphan 30 mg was administered to 10 men every 14 days for 3 months, and to 10 premenopausal women during the mid-follicular and mid-luteal phases of each menstrual cycle for three complete cycles. Urinary dextromethorphan/dextrorphan molar ratios were obtained after an overnight urine collection.

View Article and Find Full Text PDF

Hypersensitivity reactions to the aromatic antiepileptic drugs (AEDs) phenytoin (PHT) and carbamazepine (CBZ) appear to have an immune etiology. Current models of drug hypersensitivity center around the concept of drug bioactivation to reactive metabolites that irreversibly modify cellular proteins. These modified proteins are believed to initiate (or serve as targets of) an autoimmune-like attack on specific drug-modified proteins in target organs (e.

View Article and Find Full Text PDF

Objective: To determine the effect of 150 mg/day fluvoxamine on the activities of CYP1A2, CYP2D6, CYP3A, N-acetyltransferase-2 (NAT2), and xanthine oxidase (XO) by phenotyping with caffeine, dextromethorphan, and midazolam.

Methods: Oral caffeine (2 mg/kg), oral dextromethorphan (30 mg), and intravenous midazolam (0.025 mg/kg) were administered to 10 white male volunteers every 14 days for 4 months and to 10 white premenopausal female volunteers during the midfollicular and midluteal phases of the menstrual cycle for 4 complete cycles (8 total phenotyping measures).

View Article and Find Full Text PDF

NAD(P)H:quinone oxidoreductase (NQO1) catalyses the two-electron reduction of quinone compounds. NQO1 is involved in the reductive bioactivation of cytotoxic antitumour quinones such as mitomycin C, but also plays a protective role against the carcinogenicity and mutagenicity of quinones, their precursors and metabolites. Three alleles have been identified in the human population: the functional Arg139/Pro187 allele (which we have termed NQO1*1); the nonfunctional allele Arg139/Ser187 (NQO1*2) and the Trp139/Pro187 allele (NQO1*3), which is associated with a diminished activity.

View Article and Find Full Text PDF

A direct chiral-phase high-performance liquid chromatographic method for measuring the ratio of S-warfarin/R-warfarin in patient plasma is described. Plasma samples are first extracted using solid-phase C18 extraction columns, and the concentrated extracts analyzed using an (R,R) Whelk-O 1 column with a mobile phase of 0.5% glacial acetic acid in acetonitrile.

View Article and Find Full Text PDF

Antibodies recognizing rat cytochrome P450 (CYP) 3A1 but not the closely related human CYPs 3A4/5 have been identified in the sera of patients with hypersensitivity reactions to phenytoin and carbamazepine. Comparison of the mapped epitope to the comparable region in CYP3A4 revealed that Leu361 was essential for antibody recognition because of L361V mutation (mimicking human EYLDMVVNETLRL) abolished immunoreactivity. To identify alternative human autoantigens, a site-directed mutagenesis strategy was employed to identify amino acids critical for antibody recognition.

View Article and Find Full Text PDF

Objective: To evaluate intraindividual variability and the effects of sex and menstrual cycle phase on the activity of cytochrome P450 1A2 (CYP1A2), N-acetyltransferase 2 (NAT2), and xanthine oxidase.

Methods: Ten white men were given 2 mg/kg caffeine orally every 14 days for 3 months. The same dosage of caffeine was given to 10 premenopausal white women during the midfollicular and midluteal phases of three complete menstrual cycles.

View Article and Find Full Text PDF

Covalent binding of a reactive metabolite of clozapine to neutrophils or their precursors is thought to play a role in the development of clozapine-induced agranulocytosis. Immunoblotting studies with an anti-clozapine antiserum detected covalent binding of clozapine to human neutrophils in vitro when HOCl was used to generate clozapine reactive metabolite (major clozapine adducts of 31, 49, 58, 78, 86, 126, 160, and 204 kDa). In addition, incubating neutrophils with clozapine and H2O2 (major clozapine adducts of 49 and 58 kDa) or clozapine, H2O2, and human myeloperoxidase (major clozapine adducts of 31, 49, 58, and 126 kDa) also resulted in covalent binding of clozapine to the neutrophils.

View Article and Find Full Text PDF

Human microsomal epoxide hydrolase (HYL1) plays an important role in the detoxification of environmental compounds and drugs, such as the aromatic anticonvulsants phenytoin, carbamazepine, and phenobarbital, by converting their P450-generated epoxide metabolites into nontoxic diols. Recently, we have shown that a genetic defect altering the structure and function of the HYL1 protein is unlikely to be responsible for predisposing individuals to idiosyncratic hypersensitivity reactions from anticonvulsants. To evaluate the possible involvement of regulatory mechanisms, we used 5' rapid amplification of cDNA ends (RACE) and reverse transcription polymerase chain reaction (RT-PCR) to identify and characterize HYL1 5' cDNA ends.

View Article and Find Full Text PDF

Sulfonamide antimicrobials cause a delayed-onset, hypersensitivity-type syndrome characterized by fever, skin rash and multiorgan toxicity occurring 7 to 14 days after initiation of therapy. The pathogenesis is believed to be immune-mediated. We investigated whether patients with delayed-onset sulfonamide hypersensitivity reactions had antibodies recognizing hapten-microsomal protein conjugates and/or native microsomal proteins.

View Article and Find Full Text PDF