Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments.
View Article and Find Full Text PDFIn cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator.
View Article and Find Full Text PDFCell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination.
View Article and Find Full Text PDFFunctional N-methyl-D-aspartate receptors (NMDARs) are heteromultimers formed by NR1 and NR2 subunits. The M3 segment, as contributed by NR1, forms the core of the extracellular vestibule, including binding sites for channel blockers, and represents a critical molecular link between ligand binding and channel opening. Taking advantage of the substituted cysteine accessibility method along with channel block and multivalent coordination, we studied the contribution of the M3 segment in NR2C to the extracellular vestibule.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2002
We reported previously that mast cell tryptase is a growth factor for dog tracheal smooth muscle cells. The goals of our current experiments were to determine if tryptase also is mitogenic in cultured human airway smooth muscle cells, to compare its strength as a growth factor with that of other mitogenic serine proteases, and to determine whether its proteolytic actions are required for mitogenesis. Highly purified preparations of human lung beta-tryptase (1-30 nM) caused dose-dependent increases in DNA synthesis in human airway smooth muscle cells.
View Article and Find Full Text PDF