Quantum computers may demonstrate significant advantages over classical devices, as they are able to exploit a purely quantum-mechanical phenomenon known as entanglement in which a single quantum state simultaneously populates two-or-more classical configurations. However, due to environmental noise and device errors, elaborate quantum entanglement can be difficult to prepare on modern quantum computers. In this paper, we introduce a metric based on the condensation of qubits to assess the ability of a quantum device to simulate many-electron systems.
View Article and Find Full Text PDFAn outstanding challenge in chemical computation is the many-electron problem where computational methodologies scale prohibitively with system size. The energy of any molecule can be expressed as a weighted sum of the energies of two-electron wave functions that are computable from only a two-electron calculation. Despite the physical elegance of this extended "aufbau" principle, the determination of the distribution of weights─geminal occupations─for general molecular systems has remained elusive.
View Article and Find Full Text PDF