Objectives: To develop and validate an artificial intelligence (AI) system for measuring and detecting signs of carpal instability on conventional radiographs.
Materials And Methods: Two case-control datasets of hand and wrist radiographs were retrospectively acquired at three hospitals (hospitals A, B, and C). Dataset 1 (2178 radiographs from 1993 patients, hospitals A and B, 2018-2019) was used for developing an AI system for measuring scapholunate (SL) joint distances, SL and capitolunate (CL) angles, and carpal arc interruptions.
Background: Previous research identified many clinical variables that are significantly related to cognitive functioning before surgery. It is not clear whether such variables enable accurate prediction for individual patients' cognitive functioning because statistical significance does not guarantee predictive value. Previous studies did not test how well cognitive functioning can be predicted for (yet) untested patients.
View Article and Find Full Text PDFObjectives: To assess how an artificial intelligence (AI) algorithm performs against five experienced musculoskeletal radiologists in diagnosing scaphoid fractures and whether it aids their diagnosis on conventional multi-view radiographs.
Methods: Four datasets of conventional hand, wrist, and scaphoid radiographs were retrospectively acquired at two hospitals (hospitals A and B). Dataset 1 (12,990 radiographs from 3353 patients, hospital A) and dataset 2 (1117 radiographs from 394 patients, hospital B) were used for training and testing a scaphoid localization and laterality classification component.
Background: People with needle fear experience not only anxiety and stress but also vasovagal reactions (VVR), including nausea, dizziness, sweating, pallor changes, or even fainting. However, the mechanism behind needle fear and the VVR response are not yet well understood. The aim of our study was to explore whether fluctuations in facial temperature in several facial regions are related to the level of experienced vasovagal reactions, in a simulated blood donation.
View Article and Find Full Text PDFCell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental phase-contrast microscopy image sequences.
View Article and Find Full Text PDFAngiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
An approach to automatically detect bacteria division with temporal models is presented. To understand how bacteria migrate and proliferate to form complex multicellular behaviours such as biofilms, it is desirable to track individual bacteria and detect cell division events. Unlike eukaryotic cells, prokaryotic cells such as bacteria lack distinctive features, causing bacteria division difficult to detect in a single image frame.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem.
View Article and Find Full Text PDFMicrocirculation lesion is a common symptom of chronic liver diseases in the form of vasculature deformation and circulation alteration. In acute to chronic liver diseases such as biliary atresia, microcirculation lesion can have an early onset. Detection of microcirculation lesion is meaningful for studying the progression of liver disease.
View Article and Find Full Text PDFThe majority of muscles, nerves, and tendons are composed of fiber-like fascicle morphology. Each fascicle has a) elongated cells highly aligned with the length of the construct, b) a high volumetric cell density, and c) a high length-to-width ratio with a diameter small enough to facilitate perfusion. Fiber-like fascicles are important building blocks for forming tissues of various sizes and cross-sectional shapes, yet no effective technology is currently available for producing long and thin fascicle-like constructs with aligned, high-density cells.
View Article and Find Full Text PDFWe present a new approach to incorporating information from heterogeneous images of migrating cells in 3D gel. We study 3D angiogenic sprouting, where cells burrow into the gel matrix, communicate with other cells and create vascular networks. We combine time-lapse fluorescent images of stained cell nuclei and transmitted light images of the background gel to track cell trajectories.
View Article and Find Full Text PDF