Publications by authors named "Lee-Hsueh Hung"

Circular RNAs (circRNAs) are noncoding RNAs that exist in all eukaryotes investigated and are derived from back-splicing of certain pre-mRNA exons. Here, we report the application of artificial circRNAs designed to act as antisense-RNAs. We systematically tested a series of antisense-circRNAs targeted to the SARS-CoV-2 genome RNA, in particular its structurally conserved 5'-untranslated region.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of noncoding RNAs, generated from pre-mRNAs by circular splicing of exons and functionally largely uncharacterized. Here we report on the design, expression, and characterization of artificial circRNAs that act as protein sponges, specifically binding and functionally inactivating hnRNP (heterogeneous nuclear ribonucleoprotein) L. HnRNP L regulates alternative splicing, depending on short CA-rich RNA elements.

View Article and Find Full Text PDF

How multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We establish an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a novel class of noncoding RNAs present in all eukaryotic cells investigated so far and generated by a special mode of alternative splicing of pre-mRNAs. Thereby, single exons, or multiple adjacent and spliced exons, are released in a circular form. CircRNAs are cell-type specifically expressed, are unusually stable, and can be found in various body fluids such as blood and saliva.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), an abundant class of noncoding RNAs in higher eukaryotes, are generated from pre-mRNAs by circularization of adjacent exons. Using a set of 15 circRNAs, we demonstrated their cell-type-specific expression and circular versus linear processing in mammalian cells. Northern blot analysis combined with RNase H cleavage conclusively proved a circular configuration for two examples, LPAR1 and HIPK3.

View Article and Find Full Text PDF

Cell-type-specific splicing generates numerous alternatively spliced transcripts playing important roles for organ development and homeostasis, but only a few tissue-specific splicing factors have been identified. We found that RBM24 governs a large number of muscle-specific splicing events that are critically involved in cardiac and skeletal muscle development and disease. Targeted inactivation of RBM24 in mice disrupted cardiac development and impaired sarcomerogenesis in striated muscles.

View Article and Find Full Text PDF

Trans-splicing in trypanosomes adds a 39-nucleotide mini-exon from the spliced leader (SL) RNA to the 5' end of each protein-coding sequence. On the other hand, cis-splicing of the few intron-containing genes requires the U1 small nuclear ribonucleoprotein (snRNP) particle. To search for potential new functions of the U1 snRNP in Trypanosoma brucei, we applied genome-wide individual-nucleotide resolution crosslinking-immunoprecipitation (iCLIP), focusing on the U1 snRNP-specific proteins U1C and U1-70K.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a multifunctional RNA-binding protein that is involved in many different processes, such as regulation of transcription, translation, and RNA stability. We have previously characterized hnRNP L as a global regulator of alternative splicing, binding to CA-repeat, and CA-rich RNA elements. Interestingly, hnRNP L can both activate and repress splicing of alternative exons, but the precise mechanism of hnRNP L-mediated splicing regulation remained unclear.

View Article and Find Full Text PDF

The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5' splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments.

View Article and Find Full Text PDF

CD45 encodes a trans-membrane protein-tyrosine phosphatase expressed in diverse cells of the immune system. By combinatorial use of three variable exons 4-6, isoforms are generated that differ in their extracellular domain, thereby modulating phosphatase activity and immune response. Alternative splicing of these CD45 exons involves two heterogeneous ribonucleoproteins, hnRNP L and its cell-type specific paralog hnRNP L-like (LL).

View Article and Find Full Text PDF

Precise 5' splice-site recognition is essential for both constitutive and regulated pre-mRNA splicing. The U1 small nuclear ribonucleoprotein particle (snRNP)-specific protein U1C is involved in this first step of spliceosome assembly and important for stabilizing early splicing complexes. We used an embryonically lethal U1C mutant zebrafish, hi1371, to investigate the potential genomewide role of U1C for splicing regulation.

View Article and Find Full Text PDF

Heterogeneous nuclear ribonucleoprotein (hnRNP) L can regulate alternative mRNA splicing in diverse ways, binding to exonic or intronic sites and acting as either an activator or repressor. To investigate the mechanistic basis of hnRNP L-regulated alternative splicing, we focus here on two specific cases of hnRNP L-dependent splice site recognition. First, in the case of TJP1 our microarray data had suggested that exon 20 inclusion is regulated by hnRNP L as a repressor.

View Article and Find Full Text PDF

We recently characterized human hnRNP L as a global regulator of alternative splicing, binding to CA-repeat and CA-rich elements. Here we report that hnRNP L autoregulates its own expression on the level of alternative splicing. Intron 6 of the human hnRNP L gene contains a short exon that, if used, introduces a premature termination codon, resulting in nonsense-mediated decay (NMD).

View Article and Find Full Text PDF

Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach.

View Article and Find Full Text PDF

The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization.

View Article and Find Full Text PDF

We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA-rich clusters.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: