The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P.
View Article and Find Full Text PDFIn response to iron starvation, Staphylococcus aureus secretes both staphyloferrin A and staphyloferrin B, which are high-affinity iron-chelating molecules. The structures of both HtsA and SirA, the ferric-staphyloferrin A [Fe(III)-SA] and ferric-staphyloferrin B [Fe(III)-SB] receptors, respectively, have recently been determined. The structure of HtsA identifies a novel form of ligand entrapment composed of many positively charged residues.
View Article and Find Full Text PDFIron acquisition is a central process for virtually all organisms. In Staphylococcus aureus, FhuD2 is a lipoprotein that is a high-affinity receptor for iron-bound hydroxamate siderophores. In this study, FhuD2 was crystallized bound to ferrioxamine-B (FXB), and also in its ligand-free state; the latter structures are the first for hydroxamate-binding receptors within this protein family.
View Article and Find Full Text PDFProtein aggregation is a hallmark of many diseases, including amyotrophic lateral sclerosis (ALS), where aggregation of Cu/Zn superoxide dismutase (SOD1) is implicated in causing neurodegeneration. Recent studies have suggested that destabilization and aggregation of the most immature form of SOD1, the disulfide-reduced, unmetallated (apo) protein is particularly important in causing ALS. We report herein in depth analyses of the effects of chemically and structurally diverse ALS-associated mutations on the stability and aggregation of reduced apo SOD1.
View Article and Find Full Text PDFHisto-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.
View Article and Find Full Text PDFA dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP synthase. Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat pattern, implying a right-handed coiled coil structure. We investigated the potential for producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing parts of its sequence with corresponding regions of the b subunits from other eubacteria, sequences from other polypeptides having similar hendecad patterns, and sequences forming left-handed coiled coils.
View Article and Find Full Text PDFArchaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution.
View Article and Find Full Text PDFThe periplasmic domains of the Escherichia coli HflK and HflC were coexpressed and purified. The two polypeptides copurified in a 1:1 ratio, as determined by quantitative amino acid analysis. Circular dichroism studies showed the complex to have substantial helical/coiled-coil content that melted with midpoints in the range of 26-29 degrees C depending upon the concentration, implying a reversible oligomerization.
View Article and Find Full Text PDF